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Section 6.4: The Definite Integral

Recall from Section 6.3:

e For a continuous function f(x), where f(x) > 0, we can estimate the area of a region that lies under f(x) from
x = a to x = b by dividing the region into subintervals (rectangles) and adding the areas of the rectangles.

o In general, we can use any x-coordinate, x;, to find the the height of the rectangle in the i subinterval.
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Using|summation notation, we can write the sum of the areas of the rectangles as
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e The sum Z f(x{)Ax is called aRiemann sum. o
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e We can estimate the distance an object travels by estimating the area under its velocity curveusing a s
sum (assuming the VCIOCIty function is greater than or equal to 7em\ —_
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jﬁ-l/et the number of subintervals (n) go to mﬁmty, then we get the actual or exact area of the region under f(x)
between x = a and x = b, assuming m n other words:
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The above limit occurs so much, that it is given a special name and notation. We refer to this common limit as the
definite integral of f(x) from a to b and write it as
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Definition of a Definite Integral: Given a function f(x) that is continuous on the interval [a,b]|, we divide the
interval into n subintervals of equal width, Ax, and from each interval choose a point, x;. Then, the definite
integral of f(x) from a to b is —
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NOTE: | f f(x) dx “counts” area above the x-axis as positive and area below the x-axis as negative. Thus, if
f(x) > 0, the definite integral represents the actual area, and if f(x) < 0, we say it represents the signed area. If
the function is both positive and negative, then we say the definite integral represents the accumulated or net area.
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1. In the notation ff f(x)dx, the symbo@is called an integral sign. It is an elongated S (since it is a limit
of sums). ﬂﬁ) is called the integran and@ and@are the limits of integration: a is the lower limit and
b is the upper limit. The symbol@§ has no official meaning by itself;| | ab f(x)dx|is all one symbol. The

procedure of calculating an integral is called integration.
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2. The definite integral [ ab f(x)dx is a number; it does not depend on x. Recall that an indefinite integral,
| f(x) dx, represents a family functions.

Example 1: Use the graph of f(x))below to find the following. Note that the graph consists of three straight lines
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and a semicircle.
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Example 2: Evaluate each of the following by interpreting the definite integral in terms of areas
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Question: What do we do if we cannot use geometric shapey between f(x) and the x-axis to find/ [ f

exactly?
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Note: In Section 6.5, we'\will learn how to evaluate a definite integral exactly without using a graph/geometric
shapes!
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