© Math 142 Instructors, Spring 2020

Feel free to guestion me!

Section 6.3: Estimating Distance Traveled

Definite Integra

The Area Problem

Consider the area of a region that lies under the curve of of $f(x) = 0.3x^2 + 2$ from x = -2 to x = 4:

We will estimate the area under a curve from x = a to x = b by dividing the region into subintervals (rectangles) of equal width.

1

Right Sum

sht Sun

To estimate the area <u>under a curve</u> using a **right-hand sum**, we calculate the height of each rectangle by evaluating the function at the right endpoint of the subinterval.

Estimating the area of such a region using right endpoints of subintervals is denoted R_n .

Example 2: For the function $f(x) = 0.3x^2 + 2$, estimate the area of the region that lies under the graph of f(x) between x = -2 to x = 4 using a right-hand sum with three subintervals of equal width.

Notice: For the above function, L_6 is an underestimate of the actual area, and R_3 is an overestimate. Be careful! You have to graph the function with the rectangles to determine if a sum is an overestimate or underestimate of the actual area.

How can we obtain a bet	ter estimate? In (creas M:	σn.	
	=) Takho	width	Smaller	dr
<u>General Sum</u>	Smalle	er to	get the	bet

We can use *any x*-coordinate in each subinterval to get the height of the rectangle (not just the left or right endpoints). Another sum that is often used is called **a midpoint sum**. In this type of sum, the *x*-coordinates that are used to find the height of each rectangle are the midpoints of the subintervals.

Estimating the area using midpoints of *n* subintervals is denoted (M_n) .

Example 3: Estimate the area of the region that lies under the graph of $f(x) = 4 \ln x$ between x = 1 and x = 7 using a midpoint sum with four subintervals of equal width.

$$M_4 = f(1.75) \cdot (1.5) + f(3.25) \cdot (1.5) + f(4.75) \cdot (1.5) + f(6.25) \cdot (1.5)$$

If we left the *x*-coordinate we use to get the height of the rectangle in the *i*th subinterval, and let Δx be the width of each subinterval, we can write the above sum as $\sum_{i=1}^{n} \lambda_{i} = \frac{1+2+3+\cdots+n}{2}$ $\sum_{i=1}^{n} x_{i} = x_{i}+x_{3}+x_{3}+\cdots+x_{n}$ $\sum_{i=1}^{n} x_{i} = x_{i}+x_{3}+x_{3}+\cdots+x_{n}$ $\sum_{i=1}^{n} x_{i} = 2+3+n+2 = 14$ $\sum_{i=1}^{n} x_{i} = 2+3+n+2 = 14$

$$M_{4} = f(x_{1}^{*})\Delta x + f(x_{2}^{*})\Delta x + f(x_{3}^{*})\Delta x + f(x_{4}^{*})\Delta x$$

In general, we can write any sum with *n* subintervals as

$$M_n = \underbrace{f(x_1^*)\Delta x + f(x_2^*)\Delta x + \dots + f(x_n^*)\Delta x}_{-}$$

Now, we can write this sum more easily using **sigma** notation:

NOTE: The sum
$$\sum_{i=1}^{n} f(x_i^*)\Delta x$$
 is called a Riemann sum.
 $f(x_i^*)\Delta x + f(x_i^*)\Delta x = \sum_{i=1}^{n} f(x_i^*)\Delta x$
 $f(x_i^*)\Delta x = \int_{1}^{n} f(x_i^*)\Delta x$
 $f(x_i^*)\Delta x = \int_{1}^{n} f(x_i^*)\Delta x$
 $f(x_i^*)\Delta x = \int_{1}^{n} f(x_i^*)\Delta x$

a=1 5=7

n=4

 $f(\alpha_n^*)\Delta x = f(x_1)\Delta x + \cdots + f(\alpha_{n+1}^*)$

$$V = 4 km/h$$
.

C·S -> H (.4kh/h) =) 2-4=8kh

Application: The Distance Problem

One common application of estimating the area under a curve using a Riemann sum is estimating the distance an object has traveled (hence the title of this section!).

If an object travels at a constant rate (i.e., velocity), we can determine how far it has traveled after a certain amount of time (recall that distance = rate \times time).

Note: From the previous example, we see that the distance an object travels is equal to the area under the velocity curve (assuming the velocity function is positive).

However, unlike the car in the previous example, velocity is usually not constant. In other words, it will vary over time. We can estimate the distance traveled by using a Riemann sum to estimate the area under the velocity curve.

Example 5: An object travels with velocity $v(t) = t^2$, where v is in feet per second and t is in seconds. Estimate how far the object traveled during the first three seconds using left endpoints and six subintervals of equal width.

 $\Delta \chi = \frac{2a-a}{4} = 5$ We can also estimate distance traveled if the velocity of an object is recorded at certain times and displayed in a table. 6=20 AX=5 sec. n=4

a=0 Example 6: The table below shows the velocity (ft/s) of an object every five seconds over a 20 second time interval. Estimate the total distance the object travels over the 20 second time interval by finding upper and lower estimates (i.e., right and left sums).

Note: Éarlier, we mentioned that increasing the number of subintervals (rectangles) would give us a better estimate of the area under a curve. In fact, if we let the *number of rectangles go to infinity* in our Riemann sum, we will get an exact answer! We will explore this idea in the next section (Section 6.4).

