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3.3 Supplement: The Derivative

The Derivative - For y = f(x), we define the derivative of f at x, denoted by f'(x), to be
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*#If f'(x) exists for each x in the open interval (a, b), then f is said to be differentiable over (a, b).

Interpretations of the Derivative - The derivative of a function f is a new function f'. The domain of f'isa
subset of the domain of f. The derivative has various applications and interpretations, including the following:

I. Slope of the Tangent Line or

2. Instantaneous Rate of Change or

3. Instantaneous Velocity or

-

Four-step Process for Finding the Derivative f '(x)

Example: Use the four-step process to find f'(x) if f(x) = \/x+2, and then use your result to find the equation
of the tangent line of f atx = 9.
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Example: The height of a ball thrown upward is given by s(7) 16¢” + 128 feet, where f is time in seconds.
Use the limit definition of the derivative (i.e. the four-step process) to find the insfantancous velocity (i.e., velocity)
when t = 6.
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Nonexistence of the Derivative - The existence of a derivative at x = a depends on the existence of a limit at
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If the limit does not exist at x = a, we say the I'unction}_,l" is nondifferentiable at x = uAIor)!' "(a) does not exist.i

"Where does the above limit not exist (i.e. in what ways can a function f fail to be differentiable)?
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*Note: If [ is differentiable at a, then f is continuous at a. But, if [ is continuous at a, then f is not necessarily - € -+ ()'?
differentiable at a.
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Sketching f from f: |

Observe the important points and general behavior of the original graph:
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1) Points at which a tangent line is horizontal mf -C ()l) =9

2) Intervals over which the graph is increasing or decreasing .'[ ,(y\ > o - aym‘oh f (S I\ACVQA;MJ
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3) Inflection points Lo‘%‘r “/":,j _F 7 -
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4) Places at which the graph appears to be horizontal or leveling off

Example: The graph of a function f is given below. Sketch the graph of f'.
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Example: Sketch the derivative of the function shown below.
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