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3.2 Supplement: Rates of Change

Slope of the Secant Line/Average Rate of Change

#Slope of the Secant Line - A line through two points on the graph of a function is called a secant line. If the
points (a. f(a)} and (a+h, f(a+ h)) are two points on the graph of ¥ = f(x), then the slope of the secant line is
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*The slope of the secant line can also be interpreted as the or
Some examples of the average rate of change include...
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Slope of the Tangent Line/Instant Rate of Change

“Slope of the Tangent Line - Given y = f(x), the slope of the tangent line, or slope of the graph, at the point
(a. f(a)) is given by
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NOTE: The above limit exists if and only if the slopes of the secant lines between x = a and x values to the
and of a approach the same value (i.e. the slope of the tangent line).

*The slope of the tangent line can also be interpreted as the
or Some examples of the instantaneous rate of change include...
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Example: The revenue (in dollars) from the sale of x toasters each week is given by

R(IS) R(N)= 51 — 2 419
= lgge—2 22 Rl =30r-2¢ =350 — 97
where 0 < x < 25, =010 — 4G = 25..
= So00

a) Find the change in revenue if production increases from 7 to 13 toasters each week.

26y = R(h) revenwe when N loasters are Sold.
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b) Find thc in revenue 1fpr0du<,l|m1 increases from 7 to 15 toasters. Then, interpret your answer.
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¢) Find the | ate of change of re \Lan(m a)produclion level of 7 toasters. Then, interpret your answer.
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'§uppme an Ob'ecl moves along the y axis so that its location is y = f(x) = + xat time x, where y is
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Example: Let f(x) = 32 and find
a) The slope of the secant line between x = 2 and x = 5 (i.e. between the points (2, f(2)) and (5, f(3))).
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Example: The following table gives some values of a function, f(x), rounded to 5 decimal places. Use the infor-

mation to estimate the slope of the tangent line to v = f(x) dl X =1
-
}'\ = Q.0
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Example: The table below gives values of P(¢), the population of a small city in Texas in year . (Midyear
estimates are given.) - —
7N\

ya N
1994 [/ 1996 | 1998 [ 2000 | )2002
PTry | 29,036 [ 29.672/] 32,300 { 36,205 | 48,260
N—

Finf_l the average ratq of growth from 1996 to 2000, and interpret your answer. (Round your final answer to the
nca;%' ; ssary.) _——
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3.3 Supplement: The Derivative

The Derivative - For y = f(x), we define the derivative of f at x, denoted by f'(x), to be

(:/§Bpea4 foet lie ot 7(.&

*#If f'(x) exists for each x in the open interval (a, b), then f is said to be differentiable over (a, b).

Interpretations of the Derivative - The derivative of a function f is a new function f'. The domain of f'isa
subset of the domain of f. The derivative has various applications and interpretations, including the following:

I. Slope of the Tangent Line or

2. Instantaneous Rate of Change or

e

3. Instantaneous Velocity or
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Four-step Process for Finding the Derivative f '(x)

A
Example: Use the four-step process to find f'(x) if f(x) = \/x+ 2, and then use your result to find the equation (IUHO ) Cﬂ\-’ L )
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Example: The height of a ball thrown upward is given by s(r) = — 16¢” + 128¢ feet, where 7 is time in seconds.

Use the limit definition of the derivative (i.e. the four-step process) to find the insfantancous velocity (i.e.. velocity)
when t = 6.
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Nonexistence of the Derivative - The existence of a derivative at x = a depends on the existence of a limit at
x = a, that is, on the existence of
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If the limit does not exist at x = a, we say the function f is nondifferentiable at x = a. or f '(a) does not exist.

*Where does the above limit not exist (i.e. in what ways can a function f fail to be differentiable)?

*Note: If [ is differentiable at a, then f is continuous at a. But, if [ is continuous at a, then f is not necessarily
differentiable at a.
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