I11. Piecewise-Defined Functions
Definition: A piecewise-defined function is a function that is defined by different rules for different parts of its domain
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Example 5: Find the domain of the following function:
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Example 6: Write f(x) = |x — 8| as a piecewise-defined function. N B
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Brief Pre-Calculus Review Highly Suggested Homework Problems: It is highly recommended that you attempt to work
through the Pre-Calculus Review Problems that can be found under “Pre-Calculus Review Notes and Resources™ on our course

page in eCampus.
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3.1 Supplement: Limits

Limits: A Graphical Approach

Consider the graph of the function f(x):
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What is the value of f(x) as x approaches 3 from the left, i.e. lin’bf(x)'? /\
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What is the value of f(x) as x @ aches 3 from the right, i.e. Ii ? /J
at is the value of f(x) as x approaches 3 from the right, i.c \_l}%f(x)
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For a (two-sided) limit to exist, the limit from the left and the limit from the right must exist and be equal to a real
number L. That is,
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l\lim f(x) =L if and only if lim f(x) = lim flx)=L /
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Example: The graph of a function g is shown below. Use it to state the values (if they exist) of the following:
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Source: Single Variable Calenlus: Coneeprs & Convexis, 3rd ed., by Swewart, QA l"\ go( )
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Note: The existence of a limit at x = ¢ has nothing to do with the function value at ¢. In fact, the function may or

may not exist at x = c. &() 6C§) :‘__ Q‘\Aﬁ-ﬁ()(_)
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Limits: A Numerical Approach "%;T__\ fi :),\4* ‘_g()(\ — ( '
Example: Find’@» umerically, if it exists. Lh_ b() - { l
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Example: Find lim — numerically, if it exists.
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*Hence, we have a vertical asymptote at x = 0. We can also describe the way in which the limit does not exist by
writing
lim f(x) —+ oo and lim f(x) — oo
x—0~ =0+
Since the function is approaching ee from both “sides™ of x = 0, we could also write
lim f(x) — oo
x—0"
If the function were approaching oo from one side and —eo from the other, we could not “combine™ the limits to
describe the behavior (we would have to write them separately).

*But, in any case, ]i]‘[[l]f(x) DOES NOT EXIST.
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