Here's what you need to know to get the perfect grade.

- (1) 4.3-4.4 Chain Rule.
	- (a) Think a complicated function as a composition of simple functions.
	- (b) For given $f(x) = q(h(x))$,

$$
g'(h(x))h'(x) = f'(x) = \frac{df}{dx} = \frac{dg}{du} \cdot \frac{dh}{dx}.
$$

In other words, Leibniz Notation and Newton notation are just the same thing.

(c) Ex) $f(x) = \log(5^{x^2-1})$. Find $f'(x)$.

(2) 5.1 The First Derivative

- (a) $f'(x) > 0$ (positive) on an interval $\iff f$ is increasing on interval.
- (b) $f'(x) < 0$ (negative) on an interval $\iff f$ is decreasing on interval.
- (c) $f(x)$ has a *local maxima* at $x = c$ if $f(c) \ge f(x)$ when x is near c.
- (d) $f(x)$ has a *local minima* at $x = c$ if $f(c) \leq f(x)$ when x is near c.
- (e) $f(x)$ has a *local extrema* at $x = c$ if f has local maxima or minima at $x = c$.
- (f) $f(x)$ has a critical value at $x = c$ if 1) $f(c)$ exists 2) $f'(c) = 0$ or does not exist.
- (g) First derivative test
	- Assumption: $f(x)$ is a continuous function on an interval (a, b) , and $c \in (a, b)$ is a critical value of f.
	- Conclusion 1: If sign of $f'(x)$ changes from + (positive) to (negative) at $x = c$, then f has a local maxima at c.
	- Conclusion 2: If sign of $f'(x)$ changes from (negative) to + (positive) at $x = c$, then f has a local minima at c.
	- Conclusion 3: If sign of $f'(x)$ does not change at $x = c$, then f has no local minima or local maxima at c.
- (h) Ex) Find local extremas of $f(x) = 8 \ln x x^2$ using the first derivative test.
- (3) 5.2 The Second Derivative
	- (a) $f''(x) = \frac{d^2f}{dx^2}$; this is just notation.
	- (b) f is concave upward on an interval $(a, b) \iff f'(x)$ is increasing on $(a, b) \iff f''(x) > 0$ (positive) on an interval (a, b) .
	- (c) f is concave downward on an interval $(a, b) \iff f'(x)$ is decreasing on $(a, b) \iff f''(x) < 0$ (negative) on an interval (a, b) .
	- (d) $f(x)$ has an inflection point at $x = c$ if 1) $f(c)$ exists 2) $f''(c) = 0$ or does not exist 3) sign of $f''(x)$ changes.
	- (e) Second derivative test
		- Assumption: $f(x)$ is a continuous function on an interval (a, b) , and $c \in (a, b)$ is a critical value of f such that $f'(c) = 0$.
- Conclusion 1: If $f''(x) > 0$ (positive), then f has a local minima at c.
- Conclusion 1: If $f''(x) < 0$ (negative), then f has a local maxima at c.
- Note: If c is a critical value but $f'(c)$ does not exist, then we cannot use the second derivative test.
- (f) Ex) Find local extremas of $f(x) = 1 + 9x + 3x^2 x^3$ using Second Derivative Test.
- (4) 5.3 Limits at infinity.
	- (a) Given a curve $y = f(x)$, vertical asymptote is a line $x = a$ if $\lim_{x \to a^{-}} f(x) = \pm \infty$ or $\lim_{x \to a^{+}} f(x) = \pm \infty$.
	- (b) Difference between hole and vertical asymptote. ex) $f(x) = \frac{(x+1)(x-1)}{(x+1)(x-2)} \implies$ hole at $x = -1$, $VA = 2$.
	- (c) Given a curve $y = f(x)$, horizontal asymptote is a line $y = L$ if $\lim_{x\to\infty} f(x) = L$ or $\lim_{x\to-\infty} f(x) = L$. (So there are at most two horizontal asymptotes.)
	- (d) Find horizontal asymptote for rational function: Divide every term by the highest degree part of x in denominator. For example,

$$
\lim_{x \to \infty} \frac{2x^2 + 1}{x^4 + x - 2} = \lim_{x \to \infty} \frac{2x^{-2} + x^{-4}}{1 + x^{-3} - 2x^{-4}} = \lim_{x \to \infty} \frac{0 + 0}{1 + 0 - 0} = 0.
$$

(e) Find horizontal asymptote for rational function containing exponential term: Divide every term by the term of e^x which is *furthest* from zero. For example,

$$
\lim_{x \to \infty} \frac{4e^{2x} - 6e^{-3x}}{7 + e^{2x} + e^{-6x} + e^{-8x}} = \lim_{x \to \infty} \frac{4 - 6e^{-5x}}{7e^{-2x} + 1 + e^{-8x} + e^{-10x}} = \frac{4 - 0}{0 + 1 + 0 + 0} = 4.
$$
\n
$$
\lim_{x \to \infty} \frac{4e^{2x} - 6e^{-3x}}{1 + 1 + 0 + 0} = 4.
$$
\n
$$
\lim_{x \to \infty} \frac{4e^{2x} - 6e^{-3x}}{1 + 1 + 0 + 0} = 4.
$$

$$
\lim_{x \to -\infty} \frac{4e^x - 6e^x}{7 + e^{2x} + e^{-6x} + e^{-8x}} = \lim_{x \to -\infty} \frac{4e^x - 6e^x}{7e^{8x} + e^{10x} + e^{2x} + 1} = \frac{6 - 6}{0 + 0 + 0 + 1} = 0.
$$
\n(5) 5.4 Graph Sketching

- (a) Remember the table. $f'(x) > 0$ f $'(x) < 0$ $f''(x) > 0$ Increasing Concave Up Decreasing Concave Ur $f''(x) < 0$ Increasing Concave Down Decreasing Concave Down
- (b) Critical points give local maxima or local minima generally.
- (c) Use information of vertical and horizontal asymptote.
- (d) Ex) Draw a graph from given information.
	- Domain of $f: (-\infty, -1) \cup (-1, 1) \cup (1, \infty)$
	- $f(-2) = 1, f(0) = 0$, and $f(2) = 1$
	- $f'(x) > 0$ on $(-\infty, -1)$ and $(0,1)$
	- $f'(x) < 0$ on (-1,0) and $(1, \infty)$
	- $f''(x) > 0$ on $(-\infty, -1), (-1, 1)$, and $(1, \infty)$
	- Vertical asymptotes at $x = -1$ and $x = 1$
	- $\lim_{x\to\infty} f(x) = 0$ and $\lim_{x\to-\infty} f(x) = 0$
- (6) 5.5 Absolute Maxima and minima
	- (a) Assumption: $f(x)$ is a continuous function on a *closed* interval [a, b]. Let $c \in [a, b]$
	- (b) Conclusion 1: $f(x)$ has the *absolute maxima* at $x = c$ if $f(c) \ge f(x)$ for all $x \in [a, b]$
	- (c) Conclusion 1: $f(x)$ has the *absolute minima* at $x = c$ if $f(c) \le f(x)$ for all $x \in [a, b]$
	- (d) How to find:
		- (i) Find all critical values of $f(x)$ inside of $[a, b]$.
- (ii) Compare $f(x)$ at $x = a, x = b$, and $x =$ critical values. Find x giving the greatest (resp. the lowest) $f(x)$ among $x = a, x = b$, and $x =$ critical values. That x is the absolute maxima (resp. minima).
- (iii) Ex) $f(x) = x^3 3x + 5$. Find the absolute maxima and absolute minima on [0, 3].