Question: How can we use definite integrals to find the area between two continuous functions on an interval?

Theorem: If f(x) and g(x) are two continuous functions with $f(x) \ge g(x)$ on [a,b], then the area between the two curves on [a,b] is given by

Example 1: Find the area that is bounded by the curves y = x and $y = \frac{1}{2}x^2 + 2$ on [-4,3].

Example 2: Find the area that is bounded by $y = 5 - x^2$ and y = 2 - 2x.

Example 3: Find the area that is bounded by $y = \ln x$ and y = 1 on [1,5].

Example 4: Find the area that is bounded by $y = x^2 - 1$ and the *x*-axis on [0, 2].

Example 5: Find the area that is bounded by $y = -x^2$ and $y = 2x^3 - 5x$.

Example 6: Find the area that is bounded by $y = x^2 - x$ and y = 2x on $-2 \le x \le 4$.

Example 7: Set up the definite integral(s) representing the area bounded by $y = -x^2 + 10x - 17$ and the *x*-axis on [5,*B*], where B > 8.