Section 6.4: The Definite Integral

Recall from Section 6.3:

- For a continuous function f(x), where $f(x) \ge 0$, we can estimate the area of a region that lies under f(x) from x = a to x = b by dividing the region into subintervals (rectangles) and adding the areas of the rectangles.
- In general, we can use any x-coordinate, x_i^* , to find the height of the rectangle in the *i*th subinterval.

Using summation notation, we can write the sum of the areas of the rectangles as

$$f(x_1^*)\Delta x + f(x_2^*)\Delta x + \dots + f(x_n^*)\Delta x = \sum_{i=1}^n f(x_i^*)\Delta x$$

- The sum $\sum_{i=1}^{n} f(x_i^*) \Delta x$ is called a Riemann sum.
- We can estimate the distance an object travels by estimating the area under its velocity curve using a Riemann sum (assuming the velocity function is greater than or equal to zero).

The Definite Integral

If we let the number of subintervals (*n*) go to infinity, then we get the actual or exact area of the region under f(x) between x = a and x = b, assuming $f(x) \ge 0$. In other words:

The above limit occurs so much, that it is given a special name and notation. We refer to this common limit as the **definite integral** of f(x) from *a* to *b* and write it as

$$\int_{a}^{b} f(x) \, dx$$

Definition of a Definite Integral: Given a function f(x) that is continuous on the interval [a,b], we divide the interval into *n* subintervals of equal width, Δx , and from each interval choose a point, x_i^* . Then, the **definite integral of** f(x) from *a* to *b* is

$$\int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x$$

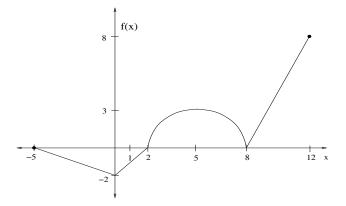
NOTE: $\int_{a}^{b} f(x) dx$ "counts" area above the *x*-axis as positive and area below the *x*-axis as negative. Thus, if $f(x) \ge 0$, the definite integral represents the actual area, and if f(x) < 0, we say it represents the *signed* area. If the function is both positive and negative, then we say the definite integral represents the *accumulated or net* area.

Important Notes:

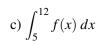
- 1. In the notation $\int_a^b f(x)dx$, the symbol \int is called an **integral sign**. It is an elongated S (since it is a limit of sums). f(x) is called the **integrand** and a and b are the **limits of integration**; a is the **lower limit** and b is the **upper limit**. The symbol dx has no official meaning by itself; $\int_a^b f(x)dx$ is all one symbol. The procedure of calculating an integral is called **integration**.
- 2. The definite integral $\int_a^b f(x) dx$ is a number; it does not depend on x. Recall that an indefinite integral, $\int f(x) dx$, represents a family functions.

Example 1: Use the graph of f(x) below to find the following. Note that the graph consists of three straight lines and a semicircle.

a)
$$\int_{-5}^{2} f(x) \, dx$$



b) $\int_0^8 f(x) \, dx$



Example 2: Evaluate each of the following by interpreting the definite integral in terms of areas.

a)
$$\int_2^5 8 \, dx$$

b)
$$\int_0^4 (x-1) \, dx$$

Question: What do we do if we cannot use geometric shapes between f(x) and the x-axis to find $\int_a^b f(x) dx$ exactly?

Example 3: Use a midpoint sum with n = 3 to estimate $\int_{-1}^{2} (x^2 - 1) dx$.

Note: In Section 6.5, we will learn how to evaluate a definite integral exactly without using a graph/geometric shapes!