4.1 Supplement: Derivatives of Powers, Exponents, and Sums

Derivative Notation - If y = f(x), then

$$f'(x)$$
 y' $\frac{dy}{dx}$ $\frac{d}{dx}f(x)$

all represent the derivative of f at x.

Derivative Rules:

1) If f(x) = c, where c is a constant, then f'(x) = 0. (Constant Function Rule)

2) If f(x) = ax + b, then f'(x) = a. (Derivative of a Linear Function)

3) If $f(x) = x^n$, where *n* is any nonzero real number, then $f'(x) = nx^{n-1}$. (Power Rule)

4) If f(x) = ku(x), where k is a constant, then f'(x) = ku'(x). (Constant Multiple Rule)

5) If f(x) = u(x) + v(x), then f'(x) = u'(x) + v'(x). If f(x) = u(x) - v(x), then f'(x) = u'(x) - v'(x). (Sum and Difference Rules)

Example: $y = \sqrt{7}$. Find y'.

Example: $f(x) = x^5$. Find f'(x).

Example: $y = t^{-3}$. Find $\frac{dy}{dt}$.

Example: $\frac{d}{dx}\frac{1}{\sqrt[3]{x^2}}$.

Example: $f(x) = 3x^2$. Find f'(x).

Example: y = 2x. Find y'.

Example: $f(x) = 3x^2 + 7x - 9$. Find f'(x).

Example:
$$y = \sqrt[3]{w} - 3w$$
. Find $\frac{dy}{dw}$.

Example:
$$\frac{d}{dx} \frac{3x^2 + x^4}{5\sqrt{x}}$$
.

Applications

Example: An object moves along the y axis (marked in feet) so that its position at time t (in seconds) is $s(t) = t^3 - 6t^2 + 9t$. Find

a) The instantaneous velocity function *v*.

b) The velocity at t = 2 and t = 5 seconds.

c) The time(s) when the velocity is 0 ft/s.

Example: Let $f(x) = x^4 - 6x^2 + 10$. Find

a) The equation of the tangent line at x = 1.

b) Find the values of *x* where the tangent line is horizontal.

Example: The total sales of a company (in millions of dollars) *t* months from now are given by $S(t) = 0.015t^4 + 0.4t^3 + 3.4t^2 + 10t - 3$. Find S(4) and S'(4). Then, **interpret** both results.

Marginal Cost, Revenue, and Profit - If x is the number of units of a product produced in some time interval, then

1) total cost = C(x) and marginal cost = C'(x)

2) total revenue = R(x) and marginal revenue = R'(x)

3) total profit = P(x) = R(x) - C(x) and marginal profit = R'(x) - C'(x)

*Marginal cost (or revenue or profit) is the instantaneous rate of change of cost (or revenue or profit) relative to production at a given production _____.

Example: A company that makes grills has a total weekly cost function (in dollars) of $C(x) = 10,000 + 90x - 0.05x^2$, where x is the number of grills produced.

a) Find C(500) and interpret your answer.

b) Find the marginal cost at a production level of 500 grills per week. Then, interpret your result.

c) Approximate/estimate the cost of producing 501 grills.

d) Approximate/estimate the cost of the 501st grill.

e) Find the exact cost of producing the 501st grill.

Derivatives of Exponential and Logarithmic Functions

1.
$$\frac{d}{dx}e^{x} = e^{x}$$

2.
$$\frac{d}{dx}\ln x = \frac{1}{x}$$

3.
$$\frac{d}{dx}b^{x} = b^{x}\ln b$$

4.
$$\frac{d}{dx}\log_{b}x = \frac{1}{\ln b}\left(\frac{1}{x}\right)$$

Example: Find $\frac{dy}{dx}$ for the following. **Do not simplify your answer!**

a) $y = \log_{\pi} x$

b)
$$y = 7.129^x$$

c)
$$y = 8e^x - e^8 + \frac{1}{9}\ln x$$

d)
$$y = x^4 - 4^x - 3\log_6 x + 7(5^x)$$

e)
$$y = \frac{x^3 - 3x(2^x) - \frac{4}{11}}{x}$$

Note: In some cases it might be necessary to simplify a function using logarithmic properties before taking the derivative.

Example: Find f'(x) if $f(x) = 5 + 7 \ln \frac{6}{x^3}$.

Example: Find the equation of the line tangent to the graph of $f(x) = 1 + \ln x^4$ at x = e.

Example: The price-demand equation of a store that sells *x* hats at a price of *p* dollars per hat is given by $p = 350(0.999)^x$. Find the rate of change of price with respect to demand when the demand is 800 hats. Then, interpret your result.