3.2 Supplement: Rates of Change

Slope of the Secant Line/Average Rate of Change

*Slope of the Secant Line - A line through two points on the graph of a function is called a secant line. If the points (a, f(a)) and (a+h, f(a+h)) are two points on the graph of y = f(x), then the slope of the secant line is given by

*The slope of the secant line can also be interpreted as the ______ or _____ or _____. Some examples of the average rate of change include...

Slope of the Tangent Line/Instantaneous Rate of Change

*Slope of the Tangent Line - Given y = f(x), the slope of the tangent line, or slope of the graph, at the point $(\overline{a, f(a)})$ is given by

NOTE: The above limit exists if and only if the slopes of the secant lines between x = a and x values to the ______ and _____ of *a* approach the same value (i.e. the slope of the tangent line).

*The slope of the tangent line can also be interpreted as the						
or						

Example: The revenue (in dollars) from the sale of *x* toasters each week is given by

$$R(x) = 50x - 2x^2$$

where $0 \le x \le 25$.

a) Find the change in revenue if production increases from 7 to 15 toasters each week.

b) Find the average change in revenue if production increases from 7 to 15 toasters. Then, **interpret** your answer.

c) Find the rate of change of revenue at a production level of 7 toasters. Then, interpret your answer.

Example: Suppose an object moves along the *y* axis so that its location is $y = f(x) = x^2 + x$ at time *x*, where *y* is in meters and *x* is in seconds. Find

a) The average velocity between 2 and 4 seconds.

b) The average velocity between 2 and 2 + h seconds.

c) The velocity at 2 seconds.

Example: Let $f(x) = 3x^2$ and find

a) The slope of the secant line between x = 2 and x = 5 (i.e. between the points (2, f(2)) and (5, f(5))).

b) The equation of the tangent line at x = 2 (i.e. at (2, f(2))).

Example: The following table gives some values of a function, f(x), rounded to 5 decimal places. Use the information to estimate the slope of the tangent line to y = f(x) at x = 1.

x	0.98	0.99	1	1.01	1.02
f(x)	0.98995	0.99499	1	1.00499	1.00995

Example: The table below gives values of P(t), the population of a small city in Texas in year t. (Midyear estimates are given.)

t	1994	1996	1998	2000	2002
P(t)	29,036	29,672	32,300	36,205	38,260

Find the average rate of growth from 1996 to 2000, and interpret your answer. (Round your final answer to the nearest integer, if necessary.)