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Abstract

This note is based on the SWAG(Student Working Algebraic Geomtery) seminar’s presentation, Fall
2018 at Texas A&M University, based on Algebraic Geometry by Hartshorne. Much part of this note
was TEX-ed after seminar.
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1 Sep 12, 2018: Chapter 2.1

Lectured by C. J. Bott,

1.1 Motivation

To study schemes, an important and fun object. We assume that

• k : algebraically closed field. (kx = k \ {0}, multiplicative group of field.)

• Every ring is commutative ring with unity.

• X be topological space

• Top(X) = { open subsets of X}.

Recall definitions from Chapter 1.
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• Projective space

Pn = (kn+1 \ {~0})/kx = {~a := [a0 : · · · : an]|ai ∈ k,∀i,~a = λ~a,∀λ ∈ kx}.

• Projective Algebraic set

V (f1, · · · , fr) = {~a ∈ Pn : f1(~a) = · · · = fr(~a) = 0}

• Zariski topology on Pn: Taking the projective algebraic sets in Pn as closed sets.

• Irreducible: For any topological space X, S ⊆ X is reducible if ∃ nonempty proper closed sets
C1, C2 ⊆ X with S = C1 ∪ C2. Otherwise we call S is irreducible .

• Projective Variety: A closed irreducible subsets of Pn.

• Quasiprojective Variety (QP-variety): X ⊆ Pn is of the form

X = Z ∩ U,U ⊆ Pn open, Z ⊆ Pn a projective vareity .

Note that QP-varieties are irreducible (and dense); see [Har97][Example 1.13].

Example 1.1 (Important QP-Varieties). 1. Projective varieties (U = Pn).

2. Affine charts. Let Ui = {[x0 : · · · : xn] ∈ Pn : xi 6= 0} = V (xi)
c ∼= An. This is complement of a variety,

so open. Now let U = Ui, Z = Pn. Then,

Pn = U0 ∪ · · · ∪ Un.

3. Affine Varieties: U = Ui, Z be any projective variety. Note that coordinate ring is K[x0, · · · , xn]/I for
some ideal, thus it is finitely generated k-algebras that are integral domain.

Note that they are all coordinate dependent.

Definition 1.2 (Morphism). ϕ : X ⊆ Pn → Y ⊆ Pm is morphism of QP-variety, if it is

1. Zariski continuous

2. ∀V ∈ Top(Y ),∀f ∈ OY (V ),

f ◦ ϕ ∈ OX(f−1(V )) where f ◦ ϕ : ϕ−1(V )→ k

Note that second condition means that pull back of regular function is also regular. To define notation used
for morphism precisely, we need bunch of definitions...

1. Function field:

K(X) = {[f, U ] : U ∈ Top(X), f : U → K, f =
g

h
, g, h ∈ k[x0, · · · , xn] are homogeneous of the same degree.}

where [f, U ] is equivalent class of functions so that

[f, U ] ∼= [g, V ] if ∃W ∈ Top(X) s.t. W ⊆ U ∩ V and f |W = g|W .

Thus,

f(λ~x) =
g(λ~x)

h(λ~x)
=
λdg(~x)

λdh(~x)
=
g(~x)

h(~x)
= f(~x).

2. Local ring at p ∈ X:
OX,p := {[f, U ] ∈ K(U) : p ∈ U}
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3. Ideal of functions vanishing at p:

mp := {[f, U ] ∈ OX,p : f(p) = 0}.

4. Ring of regular functions on V ∈ Top(X)

OX(V ) = {[f, U ] ∈ K(x) : V ⊆ U} =
⋂
p∈V
OX,p.

5. Global functions(sections):

OX(X) = {[f, U ] ∈ K(x) : X ⊆ U} = {[f,X] ∈ K(x)} ⊆ K(X).

See section 1.3 theorem 3.2 (affine) and 3.4 (projective) to see that global section of affine variety is
just coordinate ring, and that of projective variety is just k.

Now why do we care all about this? since All of this information is encoded on Sheaf of X. Note
that every QP-variety X is the union of affine varieties, since

X = Z ∩ U = (Z ∩ U0) ∪ · · · ∪ (Z ∩ Un) ∩ U

so it “is locally an affine variety.”
Affine Scheme is local object, so we can say scheme is “locally affine.” One of the advantage of scheme

is that it does not gives any restriction; we can think of any ring as geometric object, compared with
restrictions of coordinate ring, a finitely generated k-algebra with integral domain. Thus it allows us to
distinguish V (x) = V (x2) = V (x3). For example, every complement of hypersurface is embedded as variety
is one of Hartshorne’s example, so from this we can embed R \ {0} to V (xy − 1). You can see this in
[Har97][Prop 4.9 in Section 1.4].

1.2 Chapter 2.1

Definition 1.3 (Presheaf, ver 1). A presheaf (of Abelian group) on topological space X is

1. (Object) ∀U ∈ Top(X), F assign an abelian group F(U).

2. (Arrow) ∀U, V ∈ Top(X) with U ⊆ V , F assigns a group homomorphism

resvu : F(V )→ F(U) satisfying

(a) (Preserve identity) resuu = idF(U),∀U ∈ Top(X),

(b) (Preserve composition) If U ⊆ V ⊆W , then resWU = resV U ◦ resWV .

3. F(∅) = {0}.

Definition 1.4 (Presheaf, ver 2). A presheaf is a contravariant functor F : Top(X)→ Ab.

Definition 1.5 (Sheaf). A sheaf is a presheaf F satisfying

1. (Identity) If {Ui} is open cover for U ∈ Top(X), f ∈ F(U) satisfying resUUi(f) := f |Ui = 0 for all i,
then f = 0. Equivalently, if f, g ∈ F(U) with f |Ui = g|Ui for all i, then f = g.

2. (Gluing) If {Ui} is an open cover of U ∈ Top(X) and for all i, fi ∈ F (Ui) satisfies

fi|Ui∩Uj = fj |Ui∩Uj ,∀i, j

then ∃f ∈ F (U) such that f |Ui = fi.

Note that F (U) is called section of U , and F (X) is called global sections.
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We use notation of restriction to denote

resUUi
= f |Ui

.

Actually, if the abelian group consists of function, then res is just usual restriction of function.

Example 1.6 (Examples and nonexamples of Sheaf).

1. (Structure sheaf on a variety) X = QP-variety. Then U 7→ OX(U) is sheaf and res is just usual
restriction of function.

2. X be any topolgical space. Then U 7→ C0(U,R) is sheaf.

3. (Structure sheaf on a manifold) X is a smooth manifold, then U 7→ C∞(U,R) is sheaf.

4. (Counter-ex) Let X = R, and BC(U,R) be a set of bounded functions from U to R. Then U 7→
BC(U,R) is not a sheaf, since even if BC([n, n+ 1],R) is nontrivial, so it contains identity function,
but BC(R,R) doesn’t contain identity, so it cannot satisfy gluing condition.

5. (Counter-ex) Let X = {0, 1} with discrete topology. Let

F({0, 1}) = R3,F({0}) = R,F({1}) = R,F(∅) = {0}

and
resX,{0} = π1 : (a, b, c) 7→ a, resX,{1} = πb : (a, b, c) 7→ b,

and all other res to be zero map. Then, it is not a sheaf since it cannot satisfying gluing condition.
(See 2 ∈ F({0}), π ∈ F({1}).)

2 Sep 19, 2018: Chapter 2.2

Lectured by C. J. Bott,

2.1 Recall from last

(Recall from last time)
Motivation: To study SCHEMES, an important and FUN generalization of quasiprojective varieties.

1. Quasiprojective varieties are “locally affine” (unions of affine varieties)

2. Quasiprojective varieties have a sheaf as part of their definition:

OX(X) : global sections,OX(u) : regular functions,OX,p : local ring

3. Schemes will be “locally affine” (unions of affine schemes) and also have a sheaf.

4. Quasiprojective varieties required an embedding in Pn, schemes are coordinate-free (intrinsic)

5.
{Affine Varieties over k} ∼= {Fin. gen. k-algebra that are integral domains }

and
{affine schemes} ∼= {Rings}

Recall definition of presheaf and sheaf.
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2.2 Rings of functions (structured sheafs) and Nonexamples

Note that res. is usual restriction in these sheafs. Also, X is space, U ∈ Top(X).

1. X = Quasi projective varieties,OX(U) = regular function of U

2. X is any topological space, sheaf is U 7→ C0(X;R), space of continuous function from X to R.

3. X is smooth manifold, sheaf is U 7→ C∞(X;R), space of smooth function from X to R.

Also there are several nonexample.

1. X = R, u 7→ BC(U ;R) is nonexample, since boundedness is not local property. Consider identity
function on each (n, n+ 2) for all z ∈ Z.

2. X = {0, 1} with discrete topology, and presheaf F is F(X) = R3 with projection onto first element,
F(0) = F(1) = R, projection onto second element. (See counterexample 5 in previous section.)

3. (Constant Presheaf) Fix A be abelian group. Let F (U) = A. Define

res(U) :=

{
id o.w.

0 if U = ∅.

Then it is not sheaf in general; to see this, let X = {0, 1} with discrete topology, A = Z. Then,
F ({1}) = Z = F ({0}). Hence 2 ∈ F ({0}), 3 ∈ F ({1}). This implies

2|{0}∩{1} = 3|{0∩1} = 0.

Hence from the gluing axiom, ∃n ∈ Z such that n|F ({0} = 2, n|F ({1}) = 3, but there is no such integer.

2.3 Sections of a Vector Bundle

1. X is smooth manifold, and U 7→ Γ∞(U), where Γ(U) is the smooth vector field on U , i.e.,

s ∈ Γ∞(U) =⇒ s : U → tp∈UTpX s.t. s(p) ∈ Tp(X).

TpX

XU

s

As you can see the picture, sheaf can be regarded as a set of such function s, which is “sheaf” in
“natural (or agricultural)” sense, if you can find a kind of similarity with wheat’s sheaf. Now the
“stalk” which we will give definition today, is analyzing main stems near TpX, which is “stalk in sheaf”
in agricultural sense. So, it is quite natural :)

Also note that Γ∞(U) is a C∞(U ;R)-module by multiplication.

2. X is smooth manifold, and U 7→ Ωk(U), space of differential k form on U , i.e.,

s ∈ Ωk(U) =⇒ s : U → tp∈U ∧k (TpX
∗)

where s(p) ∈ ∧∗(TpX∗), s is smooth. Note that TpX
∗ is cotangent space of X∗.
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2.4 Other implication

1. Constant Sheaf (associated to constant presheaf) Let A ∈ Ab, the category of abelian group. Then
sheaf is

U 7→ C0(U ;A),

where A is given discrete topology.

2. Skyscraper sheaf: let A ∈ Ab, p ∈ X is a point fixed. Then, sheaf F is

Fιp,∗A(U) :=

{
A if p ∈ U
0 if p 6∈ U

.

2.5 Stalks

Definition 2.1 (Stalks). For p ∈ X, F a presheaf, the stalk of F at p is

Fp := lim−→
U∈Top(X)

p∈U

F(U),

i.e. direct limit ( special case of colimit in category theory). Concretely,

Fp = lim−→
U∈Top(X)

p∈U

F(U) := {[f, U ] : p ∈ U ∈ Top(X), f ∈ F(U)}/ ∼

where
[f, U ] ∼ [g, V ] if ∃p ∈W ⊆ U ∩ V such that f |W = g|W .

Claim 2.2.

1. [f, U ] = [f |W ,W ] for all W ⊆ U .

2. Fp is an abelian group, ∀p ∈ X.

Proof. 1) is just trivially application of the equivalence relation. To see 2), note that

[f, U ] + [g, V ] = [f |U∩V + g|U∩V , U ∩ V ] (Additivity)

and note that
[0, U ] for any p ∈ U.

For the last statement, note that [f, U ] = 0 =⇒ ∃W ⊆ U such that p ∈W, f |W = 0.

Remark 2.3. [f, U ] ∈ Fp is called a germ, “big seeds” in “stalk.”

Example 2.4 (Example of stalks in previous cases).

1. For sheaf from smooth manifold to a smooth vector field, stalk is just TpX.

2. For sheaf from smooth manifold to a space of differential k-forms, stalk is just TpX
∗.

3. For a constant sheaf in previous example, stalk is A.

4. For a skyscraper sheaf, stalk is either A or 0; it is A when Q ⊆ {p}, a closure of point in Zariski
topology, and zero otherwise.

Let F ,G are presheaves.
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Definition 2.5 (Morphism of presheaves). A morphism of presheaves ϕ : F → G is a collection of group
homomorphism

{ϕU : F(U)→ G(U)}

such that if U ⊆ V , then below diagram commutes.

f ∈ F(V ) ϕV (f) ∈ G(V )

f |U ∈ F(U) ϕU (f |U ) = ϕV (f)|U ∈ G(U)

ϕV

res: |U res: |U
ϕU

i.e.,
ϕU (f |U ) = ϕV (f)|U ,∀f ∈ F(V ).

Definition 2.6 (Morphism of presheaves, in categorical sense). ϕ is a natural transformation of two sheafs.

Thus, ϕ is not depends on U, V .

Definition 2.7 (Morphism of sheaves). A morphism of sheaves is a morphism of presheaves.

Remark 2.8 (Isomorphism). A morphism φ : F → G is isomorphism if φU is isomorphism for all U ∈
Top(X).

Proposition 2.9. If ϕ : F → G is a morphism of presheaves there is an induced group homomorphism on
stalk ϕP : Fp → Gp, ∀p ∈ X.

Proof. Define ϕp([f, U ]) := [ϕU (f), U ] for each [f, U ] ∈ F (U), [ϕU (f), U ] ∈ G(U). It suffices to show that it
is well-defined.

If [f, U ] = [g, V ], then

∃p ∈W ⊆ U ∩ V s.t. f |W = g|W
=⇒ ϕW (f |W ) = ϕW (g|W ) from homomorphism ϕW

=⇒ ϕU (f)|W = ϕV (g)|W by commutative diagram

=⇒ [ϕU (f), U ] = [ϕV (g), V ] by equivalence relation in the stalk

=⇒ ϕp([f, U ]) = ϕp([g, V ]) by construction of ϕp.

Theorem 2.10. ϕ : F → G is an isomorphism of sheaves ⇐⇒ The induced map ϕp : Fp → Gp are
isomorphisms ∀p ∈ X. i.e.,

φU : F(U)
∼=−→ G(U),∀U ∈ Top(X) ⇐⇒ ϕp : Fp

∼=−→ Gp,∀p ∈ X.

Proof. (⇒) Assume ϕU : F(U)→ G(U) is isomorphism fo all U ∈ Top(X). Then

1. ϕp is surjective. Let [g, V ] ∈ Gp. Then,

g ∈ G(V ) =⇒ ∃f ∈ F(V ) s.t. ϕV (f) = g

since ϕV is isomorphism. Hence,

ϕp([f, V ]) = [ϕV (f), V ] = [g, V ].

2. ϕp is injective. Assume ϕp([f, U ]) = [ϕU (f), U ] = 0 ∈ Gp. Then,

∃W ⊆ U s.t. p ∈W,ϕU (f)|W = 0.

Then by commutativity,

ϕU (f)|W = 0 =⇒ ϕW (f |W ) = 0 =⇒ f |W since injectivity =⇒ [f, U ] = 0 ∈ Fp.
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Note that (⇒) holds for presheaves.
(⇐). Assume ϕp is isomorphism, ∀p ∈ X.

1. ϕU is injective. Assume that ϕU (f) = 0. This implies

[0, U ] = [φU (f), U ] = 0 ∈ Gp,∀p ∈ U =⇒ ϕp([f, U ]) = [ϕU (f), U ] = 0.

Since ϕp is injective, [f, U ] = 0 ∈ Fp for all p ∈ X. Hence,

∀p ∈ X,∃Wp ⊆ U such that p ∈Wp, f |Wp = 0.

Since {Wp} is an open cover for U , by the identity axiom of sheaf, f = 0, as desired.

2. ϕp is surjective. Let g ∈ G(U). We want to show that ∃f ∈ F(U) such that ϕU (f) = g.

Note that [g, U ] ∈ Gp,∀p ∈ U . From the isomorphism,

∀p ∈ U,∃(fp, Vp) ∈ F(Vp)× Top(X), such that ϕp([fp, Vp]) = [ϕVp(fp), Vp] = [g, U ].

This implies that

∀p ∈ U,∃Wp ⊆ Vp ∩ U such that p ∈Wp, ϕp(fp)|Wp
= g|Wp

.

Hence,
ϕWp

(fp|Wp
) = g|Wp

,∀p ∈ U.

Now for any p, q ∈ U ,

ϕWp
(fp|Wp∩Wq

) = (g|Wp
)|Wp∩Wq

=⇒ ϕWp∩Wq
(fp|Wp∩Wq

) = g|Wp∩Wq

by the commutativity of natural transformation ϕWp . Similarly, for Wq, we can get

ϕWp∩Wq (fq|Wp∩Wq ) = g|Wp∩Wq

By injectivity of ϕWp∩Wq
, which we proved above,

fp|Wp∩Wq
= fq|Wp∩Wq

.

Hence, from the gluing axiom of sheaf F ,

∃f ∈ F(U) s.t.f |Wp
= fp|Wp

In other word,

ϕU (f |Wp =︸︷︷︸
commutative diagram

ϕWp(f |Wp) =︸︷︷︸
above equation

ϕWp = g|Wp ,∀p ∈ U.

Thus, by the identity axiom of the sheaf G,

φu(f) = g,

done.
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3 After SWAG: Cateogories and Homological Algebra

Lectured by Pablo, S.

Definition 3.1. Let C be a category, define Cop as the category

• ob(Cop) = ob(C)

• HomCop(X,Y ) := HomC(Y,X)

This is called the opposite category.

Notation: φ : X → Y such that Ker(φ) = {x : φ(x) = 0}, ker(φ) : Ker(φ)→ X.

Definition 3.2. Given C as category and {Xi}i∈I ⊆ ob(C) Consider the functor Cop → Set by Y 7→∏
i HomCop(Y,Xi) and C→ Set by Y 7→

∏
i HomC(Xi, Y ).

If we define it for G : C → Set, then G(Y ) ∼= HomC(X,Y ) functorially.

Definition 3.3. We say that functor F : Cop → Set is representable if there exists X ∈ C with

F(Y ) ∼= HomC(Y,X).

Functorially, i.e., given φ ∈ HomCop(Y,Z) then

F(V ) F(Z)

g ∈ HomC(Y,X) g ◦ φ ∈ HomC(Z,X)

F(φ)

∼= ∼=

So it is naturally isomorphic to Hom(−, X).

Lemma 3.4 (Yoneda Lemma). HomC∧(hC(X), A) ∼= A(X), functorial, where C∧ := Functors (Cop,Set),
and for A ∈ C∧, X ∈ C, hC : C → C∧ by X → HomC(−, X).

Definition 3.5. Whenever product and or coproduct are representable, then we call
∏
iXi and

∐
iXi their

representatier.

For any choice of Y and any φj : Y → Xj , Given {Xi}i∈I , we want to build
∏
i∈I Xi For this i, we need

Xj

Y
∏
i∈I Xi

Xk

φj

φk

∏
j

∏
k

Also for coproduct,

Xj

Y
∐
i∈I Xi

Xk

φj

ιj

φk

ιk
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Definition 3.6. For any choice of Y and any φj, Consider I a category, β : Iop → C a functor. Then
projective limit lim←−β(i) (or direct limit in the sense we can deal with directed set, or just colimit if we
deal with (or think directed set as) small category) is an object satisfying below commuting diagram;

β(j)

Y lim←−β

β(k)

φj

φk

∏
j

∏
k

β(s)

for any s : j → k, j, k ∈ ob(I). Note that in the category of Set, lim←−β is just
∏
i∈I Xi.

Similarly, if α : I → C is given, then injective limit lim−→β(i) (or inverse limit in the sense we can
deal with directed set, or just limit if we deal with (or think directed set as) small category) is an object
satisfying below commuting diagram;

β(j)

Y lim−→β

β(k)

φj

ιj

φk

ιk

β(s)

Definition 3.7 (Cone, cocone). A cone of the functor F : B → C is an object N together with morphisms
{φb : N → F (b)}b∈B such that for any bi, bj ∈ B, and for every morphism bi → bj, below diagram commutes

N bi

bj

φbi

φbj

Definitely, we can define cocone.
Then, projective limit is just a universal cone, and injective limit is just a universal cocone.

Example 3.8.

1. Let I be the category with two objects and two parallel morphisms other than identities, visualized by

•⇒ •

A functor α : I → C is just give a map f, g in HomC(X0, X1), for some objects X0, X1 ∈ C with.

f, g : X0 ⇒ X1.

By definition of kernel (or equalizer) in category theory, we get

Ker(f, g) X0 X1
k

f

g

such that g ◦ k = f ◦ k and for any morphism m : Y → X0 with f ◦m = g ◦m, then it has unique
morphism eq : Y → Ker(f, g) s.t. eq ◦ k = m. Thus,
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By drawing commutative diagram for this universal property for any cone Y over α, we can check that
it is just projective limit.

X1

Y ker(f, g)

X0

φ1

m

h

k

fg

Note that φ1 = f ◦m = g ◦m by definition of cone, and h := f ◦ k = g ◦ k.

2. When I has only one object and identity is the only arrow, then limit (left arrow) and colimit (Right
arrow) coincides with product and coproduct.

Proof. To see this, suppose that I = {Xi}i∈I . note that cone of α is any object N having morphisms
{N → α(Xi)}i∈I . Hence, product just satisfy commutative diagram of limit vacuously.

3. Let I be the empty category. THen lim(left arrow) is a terminal object and right arrow one is initial
object.

Proof. In this case, every element in C is a cone over α vacuously; hence if there is universal cone,
which satisfy only one property that there exists morphism from all cones in C to that universal object,
done. And we call such object as the terminal object.

4 Sep 26, 2018: Sheafification

Lectured by C. J. Bott, Recall below picture;

Fp

X
p

U

s

Note that section in Sheaf is a map from U → tp∈UFp such that

1. s(p) ∈ Fp

2. s to be continuous, differentiable, etc.. depending on the context of object X

3. If we think πp : Fp → {p}, then
tp∈Uπp ◦ s = id.

In general, section in presheaf is just an element of F(U), and we can give a map on each section to make
presheaf to sheaf. (Sheafification!) For example, if we have constant presheaf on a object A with discrete
topology, such as,

Apre(U) =

{
A if U 6= ∅
0 o.w.
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, then its sheafification A(U) = C0(U ;A). So f−1(a) should be clopen set for any a ∈ A, i.e., f is locally
constant.

Remark 4.1 (Name of several sheaf-like objects). Separated presheaf is a presheaf satisfying identity
axiom of the sheaf. And it is know that an object satisfying condition 1,2,4,5 of the sheaf is a sheaf, i.e.,
condition 1,2,4,5 implies 3. And condition 4 is needed to show uniqueness in condition 5.

Definition 4.2 (Kernel, Image, Cokernel). Let ϕ : F → G be a morphism of presheaves. Then,

1. ker(ϕ) : U 7→ ker(φU ) ⊆ F(U).

2. Im(ϕ) : U 7→ Im(φU ) ⊆ G(U).

3. coker(ϕ) : U 7→ coker(φU ) ⊆ G(U)/ Im(φu).

Proposition 4.3. If ϕ : F → G is a morphism of sheaves,

1. ker(ϕ) is a sheaf

2. Im(ϕ) is a sheaf if φU is injective for all U ,

3. coker(ϕ) is a sheaf if φU is injective for all U .

Proof. 1) First of all, ker(ϕU ) is an abelian group.
2) Also, if W ⊆ U , then resUW : F → F(W ) gives

resUW |ker(ϕU ) : ker(ϕU )→ F(W ).

Now we need to show that Im resUW |ker(ϕU ) ⊆ ker(φW ). To see this, note that

f ∈ ker(ϕU ) =⇒ ϕU (f) = 0 =⇒ ϕU (f)|W = 0|W = 0 =⇒ ϕW (f |W ) = 0.

And from the commutativity of morphism, this implies ϕU (f)|W = 0, hence Im resUW |ker(ϕU ) ⊆ ker(ϕW ), as
desired.

3) ker(ϕ∅) = 0 since ∅ is just 0→ 0.
4) If {Ui} is an open cover for U and f ∈ ker(ϕU ) satisfies f |Ui

= 0 for all i, then f = 0 since F is a
sheaf.

5) Let {Ui} be an open cover for U and let fi ∈ ker(ϕUi ⊆ F(Ui) satisfy fi|Ui∩Uj = fj |Ui∩Uj fo any i, j.
Since F is a sheaf, ∃f ∈ F(U) such that f |Ui

= fi for all i, hence it suffices to show that f ∈ ker(ϕU ). Note
that

ϕU (f)|Ui
= ϕUi

(f |Ui
) = ϕUi

(fi) = 0,∀i.

where first equality comes from the commutativity of diagram of the morphism of presheaves, and the second
equality comes from restriction, and third equality comes from the construction of fi, done. Hence by identity
axiom, ϕU (f) = 0.

Definition 4.4. Let F be a presheaf. The sheafification (Fsh, θ : F → Fsh) of F is the sheaf (if it exists)
that satisfies the following universal property; if ϕ : F → G is a morphism from F to a sheaf G, then there
exists unique morphism of sheaf Φ : Fsh → G such that below diagram commutes.

F Fsh

G

θ

ϕ
∃!Φ

And actually, we can sheafify using this construction!

Fsh(U) := {s : U → tp∈UFp}

such that
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1. s(p) ∈ Fp,∀p ∈ U

2. ∀p ∈ U,∃V such that p ∈ V ⊆ U,∃t ∈ F(V ) such that

∀q ∈ V, s(q) = [t, V ]q

and restriction is usual restriction as a function. In other words,

θU (f) : U → tp∈UFp, θU (f)(p) = [f, U ]p which is a mapf 7→ [f ] ∈ Fp.

Those two condition is called compatible section.

Remark 4.5.

1. Fsh is a sheaf.

2. If F is a sheaf, then F ∼= Fsh

3. Fsh satisfy the universal property.

4. Fshp ∼= Fp for all p ∈ X. So Fsh is the “smallest” sheaf with the same stalkes as F .

Note that if F satisfies condition 4, then morphism F → Fsh is injective.

Definition 4.6. tp∈UFp with a given topology is called the Espace Étalé. (Exercise 1.13). So we can say
that

Fsh := {s : U → tp∈UFp with given topology such that

(1)s(p) ∈ Fp,∀p ∈ U,
(2)s is continuous.}

To define the topology, we need sheafification morphism.

Only a presheaf (In general) Always a sheaf
Image kernels
Coker (Finite) direct sums (Ex 1.9)

Quotients Direct limit when X is Noetherian (Ex 1.11)
Direct limits (Ex 1.10) Inverse limits (Ex 1.12)

Tensor Product Sheaf Homomorphism (Ex 1.15)
Inverse Image of (pre)sheaf ∗ ∗ ∗ Direct image of sheaf

In case of kernel, for φ : F → G a sheaf morphism,

ker(φ)(u) = ker(φ(u))

so
φ := {φu : F(u)→ G(u)}.

Definition 4.7 (Noetherian space). A topological space X is Noetherian if ∀ descending chain of closed
subsets

X ⊇ · · · ⊇ Ui ⊇ Ui−1 ⊇ · · ·
stabilizes.

Definition 4.8 (Sheafification morphism). A sheafification morphism θ : F → Fsh is defined as

θU (f) : U → tp∈UFp

such that
θU (f)(p) := [f, U ],∀p ∈ U ∈ Top(X),∀f ∈ F(U).

So
θ = {θU : F(U)→ Fsh(U)}

is compatible with condition 2. (Note that this is just
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Construction of a etale space. From sheafification morphism, just define

Fsh := {θU (f) : U → tp∈UFp}U∈Top(X),f∈F(U)

(It seems to be tautology, but just forget θ as a presheaf morphism but a set of bunch of sections U →
tp∈UFp.)

Now for each θU (f) ∈ Fsh, let

θU (f)[U ] := {[f, U ]p ∈ Fp ⊆ tp∈UFp|p ∈ U}

and define B = {θU (f)[U ]}U∈Top(X),f∈F(U). Then, define Top(tp∈UFp) be a topoloogy generated by B as a
basis.

Thus, let s = θU (f). Then, for any p ∈ U , and for any open subset V of U containing p, there exists
t = f |V ∈ F(U), so that

∀q ∈ V, s(q) = θ(U)(f)(q) = [f, U ]q = [f |V , V ]q = [t, V ]q

since s|V and s agrees on V = U ∩ V ⊆ U . Hence this construction gives condition (2) of Fsh.
Also, to see s = θU (f) is continuous, note that for any arbitrary element of basis, say θV (g)[V ],

s−1(θV (g)[V ]) =

{
0 if f |W 6= g|W for any W ∈ Top(X)

W W ⊆ V ∩ U is maximal open set where f |W = g|W

Thus, s is continuous.

Theorem 4.9. Let F be a presheaf, and (Fsh, θ) is a sheafification of F . Then,

1. Fsh is a shaef.

2. Fshp ∼= Fp.

3. If F is a sheaf, then F ∼= Fsh.

4. (F , θ) satisfies the universal property; if G is a sheaf and ϕ : F → G a morphism, then ∃!Φ : Fsh → G
such that Φ ◦ θ = ϕ.

F Fsh

G

θ

ϕ
∃!Φ

Proof. First of all, Fsh is an abelian group, and by checking all morphisms, we can get it is a separated
presheaf. So we should check the gluing axiom. Let {Ui} be an open cover for U , and let {si ∈ F(Ui)}
satisfying

si|Ui∩Uj
= sj |Ui∩Uj

.

Define s ∈ Fsh(U) as
s(p) := si(p) if p ∈ Ui.

Then,

1. s(p) = si(p) ∈ Fp,

2. ∀p ∈ Ui ⊆ U for some i, ∃V such that p ∈ V ⊆ Ui ⊆ U and ∃t = si|V ∈ F(V ) such that

∀q ∈ V, s(q) = [s|V , V ] = [si|V , V ] = [t, V ]q

So s is well-defined section on Fsh(U), hence gluing axiom holds.
For (2), let p ∈ X. Define

ψ : Fshp → Fp by [s, U ] 7→ s(p).

We need to check 1) Well-defined, 2) group homomorphism 3) injectivity and 4)surjectivity.
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1. Well-defined: If [s, U ] = [t, V ] in Fshp , then ∃W ⊆ U ∩ V , with p ∈ W such that s|W = t|W . In
particular, p ∈W , so s(p) = t(p).

2. Group homomorphism:

ψ([s, U ] + [t, V ]) = ψ([s|U∩V + t|U∩V , U ∩ V ]) = (s|U∩V + t|U∩V )(p) = s(p) + t(p) = ψ([s, U ]) + ψ([t, V ]).

3. Surjectivity: Let [t, V ] ∈ Fp. Then,

t ∈ F(V ) =⇒ θV (t) ∈ Fsh(V ).

Hence,
ψ([θV (t), V ]) = θV (t)(p) = [t, V ]

4. Injectivity: Assume that ψ([s, U ]) = 0 ∈ Fp. Then, s(p) = 0 ∈ Fp. Thus,

∃Vp ⊆ V s.t.p ∈ Vp,∃tp ∈ F(Vp)

such that
∀q ∈ Vp, s(q) = [tp, Vp].

In particular,

0 = s(p) = [tp, Vp] =⇒ ∃Wp s.t. p ∈Wp ⊆ Vp ⊆ V and tp|Wp = 0,

and since it is derived from s(p) = 0, we get

s|Vp = θVp(tp).

Hence,
(s|Vp)|Wp = (θVp(tp))|Wp =⇒ s|Wp = θWp(tp|Wp) = θWp(0) = 0.

where the second equality of the right equation comes from the universal property of θ as a presheaf
morphism. Thus,

[s, U ] = 0 ∈ Fp.

Before proving (3), recall the theorem 2.10 in this note. Let θ : F → Fsh. Then,

θU : F(U)→ Fsh(U) by θU (f)(p) = [f, U ]p.

So,
θp : Fp → Fshp ∼= Fp by θp([f, U ]) = [θU (f), U ]

Then, from the isomorphism ψ : Fshp → Fp we showed above,

ψ ◦ θp([f, U ]) = ψ([θU (f), U ]) = θU (f)(p) = [f, U ]

From the fact that Fp = Fshp by construction, θp is an identity map for all p ∈ U . Hence, θ is isomorphism
by theorem 2.10.

For (4), we will prove this later.

Definition 4.10 (Injectivitiy, surjectivity, subsheaf, and quotient sheaf). Let φ : F → G be a morphism of
sheafs. Then,

• φ is injective if ker(φ) = 0, where 0 means a constant sheaf.

• φ is surjective if Im(φ), which is defined as sheafification of Impre(φ) is isomorphic to G, i.e., there
exists Φ : G→ Im(φ) such that Φ ◦ ι = θ.

F Impre(φ) Im(φ)

G

φ

ι

θ

∃!Φ
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• F ′ ≤ F is a subsheaf if F ′(U) ≤ F(U) as a subgroup for all U ∈ Top(X), and by consequence of this,
F ′p ≤ Fp. It is equivalent to say that an injective morphism ι : F ′ → F exists.

• Take F/F ′pre(U) = F(U)/F(U)′ and do sheafify, then we get the quotient sheaf.

Example 4.11.
ker(φ) ≤ F , Im(φ) ≤ G.

Proposition 4.12. φ : F → G is a morphism of sheaves. Then,

1. φ is isomorphism ⇐⇒ φU is isomorphism for all U ∈ Top(X). ⇐⇒ φp is isomorphism for all p ∈ U
and all U ∈ Top(X).

2. φ is injective ⇐⇒ φU is injective for all U ∈ Top(X) ⇐⇒ φp is inejctive. for all p ∈ U and all
U ∈ Top(X).

3. φ is surjective ⇐⇒ φp is surjective for all p ∈ U , and for all U ∈ Top(X).

4. φU is surjective for all U ∈ Top(X) =⇒ φ, φp are surjective for all p ∈ U, for all U ∈ Top(X).

5. φ, φp are sujective for all p does not imply that φU is surjective for all U ∈ Top(X) in general.

Proof. Notes that 1, 2 are just derived from the definition of Isomorphism of sheaf and theorem 2.10 in this
notes. Surjectivity has a problem, since, actually, we need a injectivity to prove surjectivity; see proof of the
theorem 2.10. Actually this statement is just summarize results of proof of theorem 2.10.

5 Oct 3, 2018

Proposition 5.1. If a presheaf F satisfies the identity axiom, (i.e., F is a separated presheaf), then θ :
F → Fsh is injective. (So in this case, F ≤ Fsh, and F is a subpresheaf.)

Proof. By the definition of sheafification, θU : F(U)→ Fsh(U) is given by θU (f)(p) = [f, U ]p. If θU (f) = 0,
then θU (f)(p) = [f, U ] = [0, U ] = 0 ∈ Fp for all p. Hence, ∀p ∈ U,∃Wp ∈ Top(U) such that f |Wp = 0. Since
{Wp}p∈U forms an open cover of U , by applying the identity axiom, f = 0 on U .

Hence θU is injective for any U ∈ Top(X), thus by above proposition, θ is injective as a presheaf
morphism.

Theorem 5.2. Let F be a presheaf, and (Fsh, θ) is the sheafification of F . Then the below universal property
holds; for any sheaf G and morphism φ : F → G, there exists the unique morphism Φ : Fsh → G such that
Φ ◦ θ = φ.

F Fsh

G

θ

φ
∃!Θ

Outline of the proof. Let’s define

ΦU : Fsh(U)→ Gsh(U) ∼= G(U)

by s 7→ ΦU (s) where ΦU (s) : U → tp∈UGp
by p 7→ ΦU (s)(p) := φp(s(p)).

Also notes that s ∈ Fsh(U) is a function U 7→ tp∈UFp by p 7→ s(p) ∈ Fp,∀p ∈ U .

1. Φ is well-defined morphism.

(a) Show ΦU (s) ∈ Gsh(U),∀U ∈ Top(X), s ∈ Fsh(U). To see this we need to check that

i. ΦU (s)(p) ∈ Gp,∀p. To see this, by above definition, ΦU (s)(p) = φp(s(p)) and s(p) ∈ Fp, and
since φp : Fp → Gp, we get φp(s(p)) ∈ Gp, as desired.
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ii. ∀p ∈ U,∃p ∈ V ⊆ U and t̃ ∈ V such that ∀q ∈ V,ΦU (s)(q) = [t̃, V ]. To see this, note that from
s ∈ Fsh, by construction ∀p ∈ U,∃p ∈ V ⊆ U and t ∈ F(V ) such that ∀q ∈ V, s(q) = [t, V ].
Now take t̃ = φV (t). Then,

ΦU (s)(q) = φq(s(q)) = φq([t, V ]) =

6 Oct 31 2018

The algebra-geometry dictionary for affine schemes

Definition 6.1. Let R be a ring. The spectrum of R

Spec(R) = {[P ] : P ER is a prime ideal}

So {Ideals of R} is related to { subsets of Spec(R)} by V (·), I(·).

Definition 6.2.

V (J) = {[p] ∈ Spec(R) : f([P ]) = 0,∀f ∈ J} = {[P ] ∈ Spec(R) : P ⊇ J}.

by
R→ R/P by f 7→ f([P ]) = f mod P.

Definition 6.3. Zariski topology on Spec(R) Closed subsets are of the form V (J) for J ER

Definition 6.4.
I(S) = {f ∈ R : f([P ]) = 0,∀[P ] ∈ S} =

⋂
[P ]∈S

P

Note that ∀S ⊆ Spec(R), I(S)ER is a radical ideal.

Theorem 6.5. V (·) and I(·) satisfy the following properties.

1. J1 ⊆ J2 =⇒ V (J1) ⊇ V (J2) inclusion reversing

2. S1 ⊆ S2 =⇒ I(S1) ⊇ I(S2) inclusion reversing

3. J1 ∩ J2 =⇒ V (J1) ∪ V (J2) union and intersections

4. S1 ∩ S2 =⇒ I(S1) ∩ I(S2)union and intersections

5. V (I(S)) = S̄ how to take closure

6. I ER but I 6= R =⇒ V (I) 6= ∅. Hilbert Nullstellensatz

7. I(V (J)) = Rad(J). Hilbert Nullstelensatz

8. V (J) = V (Rad(J)).

9. V (J1) ⊆ V (J2) ⇐⇒ Rad(J1) ⊇ Rad(J2)

10. V (·), I(·) are inverses and give 1-1 correspondence in the following sense

Ideal ⇐⇒ subsetofSpec(R)

Radicalideal ⇐⇒ closedsubsets

Primeideals ⇐⇒ irreducibleclosedsubsets

Maximalideals ⇐⇒ closedpoints
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Proof of the last statements. Let S ⊆ Spec(R) be irreducible closed subset. We want to show I(S) is prime.
Let fg ∈ I(S) =

⋂
[P ]∈S P . Thus, fg ∈ P for all [P ] ∈ S. Hence, f ∈ P or g ∈ P,∀[P ] ∈ S. Hence,

∀[P ] ∈ S, [P ] ∈ V (< f >) or [P ] ∈ V (< g >).

So,
S = [S ∩ V (f)] ∪ [S ∩ V (g)]

So S ∩ V (f) is closed, and S ∩ V (g) is also closed. Hence, WLOG, S = S ∩ V (f). This implies S contained
in V (f). Thus,

∀[P ] ∈ S, f ∈ P =⇒ f ∈ ∩[P ]∈SP = I(S).

Let P be prime, and assume V (P ) = V (J1) ∪ V (J2)(∗). Then, ∀[Q] ∈ V (P ), Q ⊃ P and (∗) implies
Q ⊃ J1 or Q ⊃ J2. In particular, P ⊇ P , so P contains J1 or J2. WLOG, say P ⊇ J1 Then,

V (P ) ⊆ V (J1) ⊆ V (J1 ∪ V (J2) = V (P )

implies V (P ) = V (J1).

6.1 Affine Schemes Everyone should know (in CJ’s opinion)

1. Spec(Field) = •︸︷︷︸
[(0)]

2. Spec(DVR) = •︸︷︷︸
[(0)]

, •︸︷︷︸
M

. So {M} is maximal, so closed, but {(0)} is open.

3. Spec(Z) = {[p] : p is prime} ∪ {0}. But it has no discrete topology; points are not open. Also, (0) is
open.

4. Spec(k[x]), k is algebraically closed. Then, {(x− a) : a ∈ k} ∪ {(0)}. Closure of (0) is whole points, so
it has dimension 1, so (0) itself can be regarded 0 dimension intuitively, but not rigorous sense.

5. Spec(R[x]) Upper Half space itself and (0). So closure of (0) is 2 dimension.

6. Spec(Fp), Spec(Q[x]). SInce both polynomial rings are PID, so P = (f) where f is irreducible, which
is related to minimal polynomials can be identified .

Spec(Q[x]) = Q̄/ ∼ ∪{[(0)]}, Spec(Fp) = F̄p/ ∼ ∪{[(0)]}.

by like this; ±i ⇐⇒ (x2 + 1), 3rd roots of unity ⇐⇒ x2 + x+ 1

7. SpecZ[i]. Z→ Z[i]. So, each prime in integer may not be prime in Z[i]. We know that p ∈ Z is prime
if and only if p ∼= 3 mod 4. And p = π · π′ ∈ Z[i] if p 6= 2 and p ∼= 1 mod 4, where π, π′ are conjugate.

For example, (3) is (3), (5) is decomposed to (2 + i), (2 − i)... And (1 + i), (2) are exceptions of the
rules, but prime. And also we have (0).

8. Spec(Z[x]) =


[(p)] p ∈ Z prime

[(f)] f ∈ Z[x] is irreducible

[(p, f)] p ∈ Z prime, f is irreducible in Fp[x]

[(0)]

. first two cases are not maximal. Third

one is maximal.

Arithmetic surfaces, Mumford treasure map, .... Taken picture!
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9. Spec(k[x, y]), where k algebraic closed. Then

Spec(k[x, y]) =


[(0)]

[(x− a, y − b)], a, b ∈ k maixmalA2
k-traditional

(f) f ∈ k[x, y] is irreducible

Also take picture!

Two dimensional point [(0)]

10. Spec(C[x1, · · · , xn]) is usual points + fat points for every irreducible subvariety.

First think maximal ideals if we think Spec!
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