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Motivation: To study schemes, an important and fun generalization of quasiprojective
varieties.

1. Quasiprojective varieties are “locally affine” (they are unions of affine varieties).

2. Quasiprojective varieties have a sheaf as part of their definition: OX(X) (global sec-
tions), OX(U) (regular functions), OX , p (local rings, regular at a point p).

3. Schemes will be “locally affine” (unions of affine schemes) and also have a sheaf.

4. Quasiprojective varieties required an embedding in Pn, whereas schemes are coordinate-free
(intrinsically).

5. Affine varieties over k↔ finite generated k-algebras that are integral domains, whereas
affine schemes ↔ rings.

Definition 1. A presheaf F (of Abelian groups on a topological space X) consists of
the following data: (1) to every U ∈ Top(X), F assigns an Abelian group F(U). (2) to
every inclusion U ⊂ V , F assigns a group homomorphism ρV U : F(V ) → F(Y ) such that
ρUU = id and U ⊂ V ⊂W ⇒ ρWU = ρV U ◦ ρWV . (3) F(∅) = 0.

That is, a presheaf is a contravariant functor F : Top(X) → Ab. Note that F(X) are the
global sections, F(U) are the sections on U , and ρV U is the restriction map. We denote
ρV U (f) = f |U .

Definition 2. A sheaf F is a presheaf satisfying (4, identity) if {Ui} is an open cover for
U and f ∈ F(U) such that f |Ui

is 0 for all i, f = 0, and (5, gluing) if {Ui} is an open cover
for U , and if {fi} ⊂ F(Ui) is a collection such that fi |Ui∩Uj

= fj |Ui∩Uj
for all i, j, then

there f ∈ F(U) such that f |Ui= fi.

Given the correct definitions, presheaves are common, but sheaves are useful.

Example. • X a quasiprojective variety, OX(U) the regular functions on U , for U
Zariski open.

• X any topological space, U 7→ C(X,R).

• X smooth manifold, U 7→ C∞(X,R).

• (Non-example) X = R, U 7→ BC(U,R) (gluing does not work for (n, n + 2) and
f(x) = x).

• Sections of a Vector Bundle

– X smooth manifold, U 7→ Γ∞(U), s ∈ Γ∞(U) implies s : U → tp∈UTpX for
s smooth. If we think of our tangent space as a line bundle, then the ideas of
“sheaf” and “stalk” correlate nicely with their agricultural definitions.

– X smooth manifold, U 7→ Ωk(U), the smooth differential k-forms on U (s ∈
Ωk(U)⇒ s : U → tp∈U ∧k (TpX

∗) where s(p) ∈ ∧k(TpX
∗), s smooth.

• (Non-example) X = {0, 1} with discrete topology, F(X) = R3, restriction maps to
first and second components, F(0) = F(1) = R.
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• (Non-example, constant presheaf) Fix Abelian group A, F(U) = A for all U 6= ∅.
Restriction is the identity always, except to the empty set (of course). To see why
this is a non-example: Let X = {0, 1}, A = Z. Then 2 ∈ F(0), 3 ∈ F(1). Note
2 |0∩1= 3 |0∩1= 0. Hence there should exist an n ∈ Z such that n |0= 2 and n |1= 3.
(Gluing is usually difficult over disconnected spaces.)

• X any topological space, A Abelian, U 7→ C(U,A) where A has the discrete topology.
These functions here are locally constant (constant on any connected subset of U).

• Skyscraper Sheaf. X any topological space, A Abelian, p ∈ X fixed. F(U) =

ip,∗A(U) =

{
A if p ∈ U
0 otherwise

.

Definition 3. For p ∈ X, F a presheaf, the stalk of F at p is Fp = lim →
u∈Top(X)

p∈U

F(U) =

{[f, U ] | p ∈ U ∈ Top(X), f ∈ F(U), [f, U ] = [g, V ] if ∃W,p ∈ W ⊂ U ∩ V, s.t. f |W= g |W
}.

[f, U ] = [f |W ,W ] for all p ∈ W ⊂ U . Fp is an Abelian group under the operation
[f, U ] + [g, V ] = [f |U∩V +g |U∩V , U ∩ V ], identity [0, U ]. Notes: [f, U ] ∈ Fp is called a
germ. An example of this is C∞p (U,R), the set of functions defined on U smooth around
p with the equivalence relation given in the definition above, and the group being that
Ox,p. The stalks of the constant presheaf (global), constant sheaf (local) are all A. For the
skyscraper sheaf, the sheaves are A if in the closure of {p} and 0 otherwise.

Definition 4. A morphism of presheaves φ : F → G is a collection of homomorphisms {φU :
F(U)→ G(U)} such that, if U ⊂ V , ρV U ◦ φV = φUρV U . That is, the maps commute with
restriction maps, or equivalently φv(F ) |U= φU (f |U ) (i.e., φ is a natural transformation).
A morphism of sheaves is a morphism of presheaves. This morphism is an isomorphism if
φU is an isomorphism for all U ∈ Top(X).

Proposition 1. If φ : F → G is a morphism of presheaves, there is an induced group
homomorphism on stalks φp : Fp → Gp for all p ∈ X.

Proof. Define φp([f, U ]) = [φU (f), U ]. Let us show this is well-defined. If [f, U ] = [g, V ],
there exists W,p ∈ W ⊂ U ∩ V , such that f |W= g |W . So φw(f |W ) = φW (g |W ) ⇒
φU (f) |W= φV (g) |W⇒ [φU (F ), U ] = [φV (g), V ] (this is by the equivalence relation inside
the stalk) ⇒ φp([f, U ]) = φp([g, V ]).

Theorem 1. Given φ is a morphism of sheaves, φ : F → G is an isomorphism of sheaves iff
the induced maps φp : Fp → Gp are isomorphisms for all p ∈ X. That is, φU : F(U)→ G(U)
is an isomorphism for all U iff φp : Fp → Gp an isomorphism for all p.

Proof. (⇒) Assume φU : F(U)→ G(U) is an isomorphism for all U ∈ Top(X). (Surjectiv-
ity) Let [g, V ] ∈ Gp. Then g ∈ G(V )⇒ ∃f ∈ F(V ) such that φV (f) = g. Then φp([f, V ]) =

[φV (f), V ] = [g, V ]. (Injectivity) Assume φp([f, U ])
Direct limit defn

= [φU (f), U ] = 0 ∈ Gp.
Then there exists p ∈ W ⊂ U such that f |W= 0. Then φW (f |W ) = 0⇒ φU (f) |W= 0⇒
φW (f |w) = 0⇒ f |W= 0 since φW is injective, so [f, U ] = 0 ∈ Fp.

(⇐) Assume φp is an isomorphism for all p ∈ X. We will show φU is injective
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for any U . Assume φU (f) = 0 ⇒ [φU (f), U ] = [0, U ] = 0 ∈ Gp for all p ∈ U . So
φp([f, U ]) = [φU (f), U ] = 0 ∈ Gp for all p ∈ X. Hence [f, U ] = 0 ∈ Fp for all p ∈ X. So for
all p ∈ X, there exists Wp, p ∈ Wp ⊂ U such that f |Wp= 0. {Wp} is an open cover for U ,
so f = 0.

Now we show φU is surjective for all U . Let g ∈ G(U). We want to show there is an
f ∈ F(U) such that φU (f) = g. Then [g, U ] ∈ Gp for all p ∈ U , so for all p ∈ U , there exists
fp ∈ F(Vp) such that φp([fp, Vp]) = [φVp(fp), Vp] = [g, U ]. Then for all p ∈ U , there is a
Wp, p ∈ Wp ⊂ Vp ∩ U such that φVp(fp) |Wp= g |Wp⇒ φWp(fp |Wp) = g |Wp for all p ∈ U .
Now for all p, q ∈ U , we get φWp

(fp |Wp
) |Wp∩Wq

= (g |Wp
) |Wp∩Wq

⇒ φWp∩Wq
(fp |Wp∩Wq

) = g |Wp∩Wq
. Similarly, φWp∩Wq

(fq |Wp∩Wq
) = g |Wp∩Wq

, and by injectivity of φ we get
fp∩Wp∩Wq

= fq |Wp∩Wq
. By gluing, then there exists f ∈ F (U) such that f |Wp

= fp |Wp
.

Hence φu(f) |Wp= φWp(f |Wp) = φWp(fp |Wp)
From above

= g |Wp for all p ∈ U . These agree
on every element of an open cover {Wp}. So φU (f) = g.

Definition 5. Let F be a presheaf. The sheafification of F (F sh, θ) is given by F sh(U) =
{s : U → tp∈UFp : s(p) ∈ Fp for all p ∈ U , and ∀p ∈ U , ∃p ∈ V ⊂ U and t ∈ F(v)
such that s(q) = [t, V ] ∀q ∈ V }, along with the sheafification morphism θ : F → F sh

given by θu(f) : U → tp∈UFp, θu(f)(p) = [f, U ] for all p ∈ U ∈ Top(X) and f ∈ F(U).
Equivalently F sh(U) = {s : U → tp∈UFp | s(p) ∈ Fp for all p ∈ U , and ∀p ∈ U , ∃p ∈ V ⊂ U
and t ∈ F(V ) such that s |V = θV (t)}. Note that tp∈UFp with a given topology is called

Espace Étalé, so F sh(U) = {s : U → tp∈UFp | s(p) ∈ Fp for all p ∈ U , and s is continuous
with respect to this topology}.

Theorem 2. Let F be a presheaf, (Fsh, θ) its sheafification. Then (1) Fsh is a sheaf, (2)
Fsh
p
∼= Fp ∀p ∈ X, (3) if F is a sheaf already, F ∼= Fsh, (4) (Fsh, θ) has the universal

property; i.e., given φ : F → G, there exists a unique Φ : Fsh → G that makes the obvious
map commute.

This θ map is a collection {φu : F(U) → F sh(U)} for each open U , which maps f 7→
φU (f). Now this φU (f) is itself a function which maps p 7→ [f, U ] ∈ Fp.

Proof. (of theorem) The fact that F sh(U) is an Abelian group comes from the definition.
Check that the morphisms work well, so that this definition indeed defines a presheaf. By
definition of F sh(U) as well, we get that this is a separated presheaf, so we must now show
that the gluing property holds. Let {Ui} be an open cover for U , {si ∈ F sh(Ui)} satisfying
si |Ui∩Uj

= sj |Ui∩Uj
for all i, j. Define s ∈ F sh(U) by s(p) = si(p) if p ∈ Ui (this is well-

defined by our requirement that s works well with overlaps in Ui). To determine that this s
is indeed in F sh(U), we check that s(p) = si(p) ∈ Fp, and that ∀p ∈ U , the fact that p ∈ Ui
for some i implies that ∃p ∈ V ⊂ Ui ⊂ U and t ∈ F(V ) such that ∀q ∈ V , s(q) = [t, V ].
This works by our definition of s and since si ∈ F sh(Ui). This completes the proof of (1).

Now for (2), let p ∈ X and define ψ : F sh
p → Fp mapping [s, U ] 7→ s(p). We claim this

is well-defined. If [s, U ] = [t, V ], then there exists p ∈ W ⊂ U ∩ V such that s |W= t |W .
In particular, since p ∈ W , then s(p) = t(p), so indeed this function is well-defined. For
the homomorphism property, ψ([s, U ] + [t, V ]) = ψ([s |U∩V +t |U∩V , U ∩ V ]) = (s |U∩V
+t |U∩V )(p) = s(p) + t(p) = (s + t)(p) = ψ([s, U ]) + ψ([t, V ]). Injectivity is tricky, so
we do surjectivity first. Let [t, V ] ∈ Fp. Then t ∈ F(V ), so θV (t) ∈ F sh(V ). Note

ψ([θV (t), V ]) = θV (t)(p)
Defn of θ

= [t, V ]. For injectivity, assume ψ([s, U ]) = 0̄ ∈ Fp, which
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implies that s(p) = 0̄ = Fp. Since s ∈ F sh(U), there exists p ∈ Vp ⊂ U and tp ∈ F(Vp)
such that s |Vp= θVp(tp) (this is by the second property in the “equivalent” definition of
F sh(U). In particular, 0 = s(p) = [tp, Vp] ⇒ ∃p ∈ Wp ⊂ Vp ⊂ U such that tp |Wp= 0 (this
is by the second proeprty in the original definition of F sh(U)) and s |Vp

= θVp
(tp) ⇒ (s |Vp

) |Wp
= θVp

(tp) |Wp
⇒ s |Wp

= θWp
(tp |Wp

) = θWp
(0) = 0 ⇒ [s, U ] = 0 ∈ F sh

p . This gives us
our isomorphism and completes the proof of (2).

Recall the theorem that states that a morphism of sheaves is an isomorphism iff the
induced maps φp : Fp → Gp where φp([f, U ]) = [φU (f), U ] are isomorphisms for all p ∈ X.
We will attempt to show these induced maps are indeed isomorphisms so that we can get the
desired isomorphism for (3). Recall that θu : F(U) → F sh(U) maps θu(F )(p) = [f, U ]. So

θp : Fp → F sh
p where θp([f, U ]) = [θu(f), U ]

ψ↔ θu(f)(p) = [f, U ]. Hence θp is the identity
map for all p, and by the one-to-one correspondence this is an isomorphism.

(4) We will prove this later.

We give some definitions. φ : F → G is a morphism of sheaves. Then φ is injective if

kerφ = 0 and φ is surjective if Imφ := Impre φ
sh ∼= G. We say FE ≤ F , or that FE is a

subsheaf of F , if FE(U) ≤ F(U) for all U . A consequence of this is that FE
p ≤ Fp for all p.

FE is also considered a subsheaf of F is there is an injective morphism i : FE → F . Take
F/FE

pre(U) = F(U)/FE(U); then we get a quotient sheaf by sheafification (!). Note that
kerφ ≤ F and Imφ ≤ G.

Proposition 2. φ : F → G is as above. Then φ is an isomorphism iff φU is an isomorphism
∀U iff φp if an isomorphism ∀p (by definition and by previous proposition). Furthermore,
φ is injective ⇐⇒ φU is injective ∀U iff φp is injective ∀p, and φ is surjective ⇐⇒ φp is
surjective ∀p (we don’t get that φ surjective implies that φU is surjective for all U ; see the
proof of the previous proposition). If φU is surjective for all U , then φ and φp are surjective.

In the last statement: that φU is surjective for all U implies that φp is surjective for all
p is clear by definition, but the reverse takes some work.

(10.10)

Proposition 3. If F satisfies the identity axiom (i.e., F is a separated presheaf), then θ
is injective (so in this case F ≤ Fsh, and F is a subpresheaf).

Proof. Recall that θU : F(U)→ F sh(U) is given by θU (f)(p) = [f, U ] (this is by definition
of what the sheafification of a presheaf is). If θU (f) = 0, then θU (f)(p) = [f, U ] = [0, U ] =
0̄ ∈ Fp for all p. Hence ∀p, ∃p ∈ Wp ⊂ U such that f |Wp= 0. Now {Wp} is an open cover
for U , so f = 0 by the identity property.

Theorem 3. Let F be a presheaf, (Fsh, θ) its sheafification. Then (Fsh, θ) satisfies the
following universal property: If G is a sheaf and φ : F → G is a morphism, then ∃!
morphism Φ : Fsh → G such that Φ ◦ θ = φ.

Proof. We define ΦU : F sh(U)→ Gsh(U) ∼= G(U) where ΦU (s) : U → tp∈UGp is defined by
p 7→ ΦU (s)(p) = φp(s(p)) (again, recall s is a function in F sh(U), so s(p) makes sense).

We want to show this is well-defined. First we show that ΦU (s) ∈ Gsh(U) for all
U ∈ Top(X), s ∈ F sh(U). We note that ΦU (s)(p) ∈ Gp for all p by our definition of it, as per
condition (1) for sheafification. Furthermore, (we will choose t̃ = φV (t), but our definitions
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of V, t come later), then for all p ∈ U , there ∃p ∈ V ⊂ U and t̃ ∈ G(V ) such that ∀q ∈ V ,
ΦU (s)(q) = [t̃, V ]. This is since s ∈ F sh(U), so that for all p ∈ U , ∃p ∈ V ⊂ U and t ∈ F (V )
such that ∀q ∈ V , s(q) = [t, V ]. Then ΦU (s)(q) = φq(s(q)) = φq([t, V ]) = [φV (t), V ] for all
q ∈ V , proving (2) in sheafification. We also can show that ΦU is a group homomorphism,
and that if W ⊂ U , ΦU (s) |W= ΦW (s |W ). This will show that we have a well-defined
morphism.

Now we outline how Φ◦θ = φ. We recall the lemma from before that, if ψ,ψE : F → G
are morphisms of sheaves, then ψ = ψE ⇐⇒ ψp = ψE

p ∀p ∈ X, the induced maps. We can
then show that (Φ ◦ θ)p = Θp ◦ θp = φp for all p which are simple and left to the reader as
an exercise. :)

Finally we show that Φ is unique. If ∃Ψ : F sh → Gsh such that Ψ ◦ θ = φ = Φ ◦ θ,
then this implies Ψp ◦ θp = Φp ◦ θp. Now since θp is an isomorphism (as we have seen in a
previous lemma), we get that Ψp = Φp ∀p, which implies Ψ = Φ, giving uniqueness.

Definition 6. If f : X → Y is continuous and F is a sheaf onX, we define the direct image sheaf

(f∗F)(V ) to be a sheaf on Y where (f∗F)(V ) = F(f−1(V )) where restrictions come from
F . If f : X → Y is continuous and G is a sheaf, then the inverse image sheaf f−1G is a

sheaf on X where for all U ∈ Top(X), f−1G(U) = lim−→V ∈Top(Y )
f(U)⊂V

G(V ); this sheaf is given by

sheafifying the resulting presheaf from this construction.

Example. Let ip : {p} ↪−→ X for p ∈ X. Let F be the constant sheaf A on {p} where A is
an Abelian group (recall: this sends {p} to A and ∅ to 0). Then ip,∗A is the direct image

sheaf such that, ∀V ∈ Top(X), ip,∗A(V ) = A(i−1p (V )) =

{
A if p ∈ V
0 if p /∈ V

. This is deemed

the skyscraper sheaf; we have seen this before.

Example. Let i : Z ↪−→ X be inclusion, where G is a sheaf on X. Then ∀U ∩ Z ∈ Top(Z),
i−1G(U ∩ Z) = lim−→U∩Z⊂V G(V ) (sheafify). In the special case where Z is open in X,

i−1G(U ∩Z) = G(U ∩Z), so this does not need sheafification. In this case, we denote i−1G
as G |Z , a sheaf on Z.

Here is a note: we have (f−1G)p = Gf(p) for all p ∈ X. On the other hand, f∗ and f−1

are adjoint functors; that is, HomX(f−1G,F) = HomY (G, f∗F).
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2.2 Affine Schemes. I am ready for more categories.

Definition 7. A ringed space (X,OX) is a topological space X equipped with a sheaf of
rings OX called the structure sheaf of X (on the topology of X).

A locally ringed space is a ringed space (X,OX) such that the stalks OX,p are local
rings.

A morphism of ringed spaces (f, f# : (X,OX)→ (Y,OY ) consists of a continuous map

f : X → Y and a morphism of sheaves f# : OY → f∗OX (or equivalent a morphism of
sheaves f# : OX → f−1OY ). Recall that f∗(OX(V ) = OX(f−1(V )) for all V ∈ Top(Y ),
and since f−1(V ) is open since f is continuous, this makes sense.

A local homomorphism is a ring homomorphism φ : A → B of local rings such that

φ−1(mB) = mA where mA,mB are maximal ideals of their respective spaces.
A morphism of locally ringed spaces is a morhpism of ringed spaces (f, f#) : (X,OX)→

(Y,OY ) such that the induced maps on stalks f#p : OY,p → f∗OX,p is a local homomorphism
∀p ∈ X.

An isomorphism of locally ringed spaces is a morphism where f is a homeomorphism

and f# is an isomorphism of sheaves. If this (f, f#) exists, we say (X,OX) and (Y,OY )
are isomorphic.

A manifold of dimension n is a locally ringed space (X, θX) where X is second count-
able Hausdorff and X has a cover {Ui} such that (Ui,OX |Ui

) is isomorphic (as locally
ringed spaces) to (U,CoU ) for some open U ⊂ Rn. Here CoU is defined to be the continuous
functions C0(V,R) for all V ⊂ U open.

Example. Let M be a smooth n-manifold. Then we can define TpM := {linear D :
C∞(R) → C∞(R) | D(fg) = D(f)g(p) + f(p)D(g)} = {linear D : C∞p (R) → C∞p (R) |
ditto }. We are heavily using that the functions C∞(R) on R form a sheaf, so that we can

retrieve global information from the local information given from stalks. This is equal to
{linear D : mp → C∞p (R)/mp

∼= R} where mp = {f ∈ C∞p (R) | f(p) = 0 | ditto }, since we
might as well only consider derivatives of functions whose values at p = 0 since derivatives
are translation-invariant. This equals { linear D : mp/m

2
p → R}, the definition of tangent

space as given, where mp/m
2
p = TpX

∗, the cotangent space.

Definition 8. Let (X,OX) be a ringed space. A sheaf of OX -modules (or OX -module) is
a sheaf of Abelian groups F on X such that ∀U ∈ Top(X), F(U) is an OX(U)-module,
and where ρWU : F(U) → F(W ) (always a group homomorphism) is an OX(U)-module
homomorphism, where F(W ) is given the OX(U)-module structure from the pushforward
of ρWU : θX(U) → θX(W ) (a ring homomorphism). Once again, if φ : A → B is a group
homomorphism, then B is an A-module where a.b = φ(a)b; this is the pushforward.

Our goal is to associate to every ring A a locally ringed space (an affine scheme)
(SpecA,OSpecA); to every A-module M , an OSpec(A)-module M̃ (a quasicoherent sheaf);

and if A is Nötherian and M is finitely generated, an OSpec(A)-module M̃ (a coherent sheaf).
We return to varieties for the moment. Recall that a morphism of quasiprojective va-

rieties is a continuous φ : X → Y such that, for every regular f ∈ OY (U), f ◦ φ is regular
as an element in OX(f−1(U)) = φ∗OX(U). Hence with such a morphism we may define a

map φ# : OY → φ∗OX given φ#U : OY (U)→ φ∗OX(U) = OX(φ−1(U)) mapping f 7→ f ◦φ.
This gives an example of the pushforward structure given here and relates our definition of
regular to our definitions.
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Definition 9. An (abstract) algebraic variety is a locally ringed space (X,OX) with a cover
{Ui} such that (Ui,OX |Ui) is isomorphic to an affine variety ∀i.

A scheme is a locally ringed space (X,OX) with a cover {Ui} such that (Ui,OX |Ui) is
isomorphic to (Spec(Ai),OSpec(Ai)) for some rings Ai for all i.

Although we have not discussed all the following inclusions, we have that Ringed spaces⊃
Locally ringed spaces⊃ Manifolds, and Locally ringed spaces ⊃ Schemes ⊃ Varieties.

(10.24)

Definition 10. Let R be a ring. The (prime) spectrum of R, denoted SpecR, is the set of
all prime ideals of A.

We note that elements of Spec(R) are denoted [P ] for P ER prime. We define V :
{Ideals of R} → {Subsets of Spec(R)} such that V (J) = {[P ] ∈ Spec(R) | f([P ]) = 0∀f ∈
J}, where f([P ]) := f(mod p) in R/P . This notation comes from thinking of elements in
our ring R as functions: we can write f ∈ R ⇒ f : Spec(R) → t[P ]∈Spec(R)R/P , where
f([P ]) ∈ R/P .

Definition 11. V (I) := {[P ] ∈ Spec(R) | P ⊃ I}. The Zariski topology on Spec(R) has as
closed subsets V (I) for all ideals I ER.

We prove this is a topology. We get V ((0)) = Spec(R), and V (R) = ∅ since we ask
that our prime ideals be proper. V (J) ∪ V (K) = V (JK) since J,K are prime.

⋂
i V (Ji) =

V (
∑
i Ji). Since JK,

∑
i Ji are prime ideals, we are done.

Here’s where we will end up: we will be defining a sheaf of rings where our set is
Spec(R) with the Zariski topology and the global sections OSpec(R)(Spec(R) ∼= R.

If θ : R → S is a ring homomorphism, we can define a continuous map Spec(θ) :
Spec(S)→ Spec(R) by Spec(θ)([P ]) = [θ−1(P )]. The fact that such a function exists comes
from the correspondence theorem for (prime) ideals. For proof of continuity in the Zariski
topology, we observe that Spec(θ)−1(V (J)) = V (θ(J)), so closed sets pull back to closed
sets.

We make some notes here: if φ : R → S is injective, Spec(R) is a quotient space of
Spec(S). If φ : R→ S is surjective, then we can embed Spec(S) ⊂ Spec(R) (as a subspace).

Let us observe how this Zariski topology behaves on Spec(R). Given [P ] ∈ Spec(R), we
get [P ] =

⋂
C⊃[P ] closed = C =

⋂
[P ]∈V (I)) V (I) =

⋂
I⊂P V (I) = V (P ). That is, the closure

of a point is itself in Spec(R) iff P is maximal.
We would like to get a version of Hilbert’s Nullstellensatz for this topology. For proving

this in the case of varieties, we needed that the maximal ideals of k[x1, . . . , xn] were all of
the form (x1−a1), . . . , (xn−an) for ai ∈ k; plus we needed a Rabinowitsch trick. We claim
that the analogs of these statements for sheafs are trivial.

We quickly recall that V (J) := {p ∈ An(k) | f(p) = 0 ∀f ∈ J} and that I(W ) := {f ∈
k[x1, . . . , xn] | f(p) = 0∀p ∈ W} where V maps from ideals of k[x1, . . . , xn] to subset of
An(k) and I maps from subset of An(k) to ideals of k[x1, . . . , xn] and An(k) is n-affine space.
The weak Nullstellensatz for sheafs says that, if I ( R is a proper ideal, V (I) 6= ∅. Every
proper ideal is contained in a maximal ideal, so this comes directly. For the strong version,
define I(W ) := {f ∈ R | f([P ]) = 0∀[P ] ∈ W} = {f ∈ R | f ∈ P ∀[P ] ∈ W} =

⋂
[P ]∈W P

for all W ∈ Spec(R). But then we can prove what is desired, since I(V (J)) =
⋂

[P ]∈V (J) P =⋂
P⊃J P =: Rad(J) by the well-known theorem that the radical of an ideal is the intersection
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of the prime ideals containing it.
Having this information, we look at some examples of affine schemes. Recall that, given

different fields, V (x2 + 1) looks different: if R is our field this space is empty, but V (x2 + 1)
is (x2 + 1) when our field over our affine space is C. This leads into our first example:

Example. Spec(Field). Looking at Spec(R) and Spec(C), these two are fundamentally
different even at [(0)]. The global sections on this point in Spec(R) are isomorphic to R
(requires justification), whereas on Spec(C) these global sections are isomorphic to C, and
R, C are not isomorphic.

Spec(DV R), where DVR is discrete valuation ring, meaning PIDs with exactly one
non-zero prime ideal. We start with a two-point space [(0)] and [(P )]. Our topology is
the empty set, {[(0)]}, and Spec(R), since the Zariski topology on this space says the only
closed space is [(P )].

Spec(Z). The prime ideals are (p) where p is prime. [(0)] is considered a fat point,
since (topologically speaking) it lives inside every other point.

Spec(C[x]) =: A1(C). The prime ideals are (x− a) or (0), the latter again being a fat
point. The geometric picture for this is C ∼= R2.

Spec(R[x]) = {[(0)], [(x−a)](a ∈ R), [(ax2+bx+c)](a, b, c ∈ R, b2−4ac < 0)}. These are
all the prime ideals in R[x] since any polynomial can be factored into linears and quadratics
(where coefficients of all polynomials are in R). Geometrically speaking, we can think of
Spec(R[x]) as a quotient of Spec(C[x]) in the following way: every linear (x − a) can be
mapped to the horizontal axis by the correspondence a ↔ (x − a). For quadratics, we
can map (ax2 + bx + c) to the zero with positive imaginary part. This is a one-to-one
correspondence, so Spec(R[x]) can be thought of as a the closed upper half-plane.

(Skipped 10.31; see Byeongsu’s notes.)
(11.7) Recall that we redefined our affine spaces A2

C and A3
C to be Spec(C[x, y]) and

Spec(C, [x, y, z]), respectively. This space the fat point [(0)], the less fat points (f) for
f ∈ C(x, y) (whose closures correspond to the one-dimensional vanishing sets typical in
A2

C), and the maximal ideals [(x−a, y−b)] (which correspond to single points in the plane).
We have mentioned that the closures are indeed these vanishing sets, and to see this we note
that S̄ = V (I(S)) (which will be proven in the morning sessions) where V is vanishing of an
ideal and I(S) = ∩[P ]∈SP . Hence {[(x)]} = V (I(x)) = V (x) = {[(x)]}∪{[(x, y−b)] | b ∈ C}.
So the closure is indeed this fat point unioned with the y-axis. Also, {[(x2 + y2 − 1)]} =
V (I(x2 + y2 − 1)) = V (x2 + y2 − 1) = {[(x− a, y− b)] | a2 + b2 − 1 = 0} ∪ {[(x2 + y2 − 1)]}.

Now in A3
C, the ideals corresponding to surfaces are not so simple, as can be seen by

the example of the twisted cubic which is the closure of (xz− y2, y− z2, x− yz). There are
still lines generated by just one element - the x-axis is the closure of the fat point by (y, z).
Note that the closure of [(z)] contains the entire xy-plane as well as any curve living on the
xy-plane.

Now we move on to the spectrums of quotient rings. For any ideal J , we have
Spec(R/J) ↔ {[P ] ∈ Spec(R) | P ⊃ J} ↪−→ Spec(R) where the embedding is Spec(φ) :
Spec(R/J)→ Spec(R) is given by [P ] 7→ [φ−1(P )] where φ is the canonical projection of R
onto R/J .

Example. Spec(C[x, y]/(y−x2)) is the parabola y = x2 together with the fat point [(0)], or
the vanishing set of (y − x2) with this fat point. Also, Spec(C[x, y]/(xy)) is the coordinate
axes with the fat points (x), (y), or the vanishing set of (xy) with these two fat points.
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Also, Spec(C[x, y, z]/(x2 +y2 +z2−1)) is the unit sphere in A3
C, together with all fat points

whose closures are curves in A3
C intersected with the sphere (the intersection of prime ideals

is prime).

Let S ⊂ R is a multiplicative subset. Then Spec(S−1R)↔ {[P ] Spec(R) | P ∩S = ∅} ⊂
Spec(R) (not necessarily an embedding here if R is not an integral domain; the canonical
projection φ : R→ S−1R is not necessarily injective).

There are two flavors of these localizations, given by different designations of the mul-
tiplicative subset: (1) S = R \ P, P ER, which yields Rp; (2) S = {1, f, f2, . . . } for f ∈ R,
which yields Rf . Note that (1) Spec(Rp) ↔ {[Q] ∈ Spec(R) | Q ∩ (R \ P ) = ∅} = {[Q] ∈
Spec(R) | Q ⊂ P}; and (2) Spec(Rf ) ↔ {[P ] ∈ Spec(R) | P ∩ {1, f, f2, . . . } = ∅} P prime

=
{[P ] ∈ Spec(R) | P ∩ {f} = ∅} = {[P ] ∈ Spec(R) | f /∈ P} = Spec(R) \ V (f) =: D(f), a
distinguished open set, since V (f) := V ((f)) = {[P ] ∈ Spec(R) | f ∈ P} by definition of V .

Example. (Of (1)) Spec(C[x, y](x,y)). The only closed point is [(x, y)] which exists at the
origin of our picture, and the only other (fat) points that exist are [(0)] and those that
correspond to points going through the origin [(x, y)]; this is since we have localized at
this point. For instance, (y − x2) is contained within (x, y), so the closure of (y − x2) is a
parabola that goes through this origin, and (y − x2) is in our spectrum. However, the unit
circle (x2 + y2 − 1) is not in this picture.

Spec(C[x, y, z](y,z)). This has the fat points (0), (y, z), (z), (y), and all those curves in
y and z going through the x-axis. For instance, (y − z2).

(Of (2)) Spec(C[x, y]x). This is the affine space minus the x-axis and the fat point (x),
as can be seen by our exposition of (2) above. Also, Spec(C[x, y, z]x2+y2−z2) is the entire
affine 3-space minus the cone.

(11.14) We now discuss function on Spec(R): for all f ∈ R, we may make f a function
on Spec(R) into t[P ]∈Spec(R)R/P ↪−→ t[P ]∈Spec(R)kP (x) where [P ] 7→ f([P ]) := f mod P .
For instance, (x3 − 27) mod (x − 2) is 35, and (x3 − 27) mod (x − i) is 27 − i. We can
generalize the topology on vector/fiber bundles to put a topology on Spec(R) that is the
weakest one such that all such maps f are continuous. (This will be formalized at morning
meetings.) We ask: what f

g are defined at [P ] ∈ Spec(R)? The answer: if g([P ]) 6= 0; i.e.,

g /∈ P . In other words, f
g ∈ RP (localization), which is (R/P )−1R. We ask: what is the

domain of some f
g ? The answer: {[P ] ∈ Spec(R) | g([P ]) 6= 0} = {[P ] ∈ Spec(R) | g /∈ P} =

{[P ] ∈ Spec(R) | P 6⊃ (g)} = Spec(R)\V (g) =: D(g), called the distinguished open set. (3)

What f
g are defined on D(h)? Answer: we cannot have any elements in the denominator

that might vanish on D(h), so the only elements that will suffice will be powers of h itself.
Hence the set we search for is { a

hk : a ∈ R, k ∈ N} = Rh = {1, h, h2, . . . }−1R.
We claim that {D(f) : f ∈ R} forms a basis for the Zariski topology on Spec(R).

These distinguished open sets do not account for every open set in this topology. Note that
D(x) ⊂ Spec(C[x, y]) is everything but the y-axis, and D(y) ⊂ Spec(C[x, y]) is everything
but the x-axis. Hence Spec(R) \ V (x, y) = D(x) ∪D(y) is not a distinguished affine open
set in itself but will be open.

Definition 12. Let X be a topological space with basis B = {Bi}i∈I . A B-sheaf F on
X consists of the following data: (1) F assigns to each Bi an Abelian group F(Bi); (2)
F assigns to every inclusion Bj ⊂ Bi in B a group homomorphism ρij : F(Bi) → F(Bj)
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satisfying (a) ρii = ιF(Bi) and (b) Bk ⊂ Bj ⊂ Bi implies ρik = ρjk ◦ ρij ; (3) if B ∈ B
and {Bi}i∈J⊂I is a cover for B with f ∈ F(B) satisfying f |Bi= 0 in F(Bi) for all i ∈ J ,
then f = 0; (4) if B ∈ B and {Bi}i∈J⊂I is a cover for B with {fi ∈ F(Bi)} a collection
satisfying fi |Bk

= fj |Bk
for all i, j ∈ J and Bk ∈ B such that Bk ⊂ Bi ∩ Bj , then there

exists f ∈ F(B) such that f |Bi
= fi for all i ∈ J .

Definition 13. Let F be a B-sheaf on X. Then ∀p ∈ X, the stalk at F at p is Fp =
lim →

p∈Bi∈B
F(Bi) = {[f,Bi] | Bi ∈ B, f ∈ F(Bi), and [f,Bi] = [g,Bj ] if ∃Bk ∈ B such that

p ∈ Bk ⊂ Bi ∩Bj and f |Bk
= g |Bk

.

Definition 14. Let F be a B-sheaf on X. The sheafification of F is given by the data:
∀U ∈ Top(X), F sh(U) = {s : U → tp∈UFp | (1)s(p) ∈ Fp ∀p ∈ U, (2)∀p ∈ U,∃p ∈ Bi ∈ B
with Bi ⊂ U and f ∈ F(Bi) such that ∀q ∈ Bi, s(q) = [f,Bi] in Fq} and with restriction
maps being as usual.

Proposition. Fsh is a sheaf on X. For all p ∈ X, Fsh
p
∼= Fp. For all Bi ∈ B, Fsh(Bi) ∼=

F(Bi).

Proofs here are similar to those given before. In (2) we use the map φ : F sh
p → Fp given

by φ([s, U ]) = s(p) ∈ Fp, and in (3) we use ψ : F(Bi) → F sh(Bi) mapping f 7→ f̃ where

f̃(p) = [f,Bi] for all p ∈ Bi.
We now wish to extend our functions on Spec(R) in order to make a sheaf. Let

B = {D(f) | f ∈ R} be our basis. Let F(D(f)) = Rf be our B-sheaf on Spec(R), with the
following restriction maps: if D(f) ⊂ D(g), then f ∈ Rad(g) (Hilbert), so fk = gh for some
k ∈ N and h ∈ R. We may define ρgf : Rg → Rf by mapping a

gm 7→
ahm

gmhm = ahm

fkm ∈ Rf .

(This is a ring homomorphism. Believe it.) We claim that OSpec(R),[p]
∼= Rp. Define the

structure sheaf OSpec(R) to be the sheafification of our B-sheaf. Then for all U ∈ Top(X),
OSpec(R)(U) = {s : U → t[P ]∈URp | (1)s([P ]) ∈ Rp ∀[P ] ∈ U (2)∀[P ] ∈ U,∃[P ] ∈ D(f) ⊂
U and a

fk ∈ Rf such that ∀[a] ∈ D(f), s([Q]) = a
fk in Rq}.

Theorem. (1) OSpec(R)(Spec(R)) ∼= R. (2) OSpec(R)(D(f)) ∼= Rf . (3) OSpec(R),[P ]
∼= Rp.

Proof. For (1), note that Spec(R) = D(1). The rest come directly from the previous
proposition that the stalks and (local) rings associated with B ∈ B in the B-sheaf are the
isomorphic to those in the sheafification.


