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1 Rings and Ideal

Proposition 1.1. There is a one-to-one order-preserving correspondence between the ideals b of A which

contains a, and the ideals b of A/a, given by b = ¢~1(b).
Proof. Let
A :={ ideal containing a}, A := { ideal of A/a.},

and ¢ : A — A/a canonical projection. Then, first of all we should check that ¢(b) is ideal when b is an
ideal.

o IfT € A/a, 7 € ¢(b),

y=7-9=9(x)p(y) = ¢(xy) € ¢(b)

since x € A,y € b implies zy € b.



e Also, it is closed under addition since T+7 € ¢(b) implies z,y € b implies z+y € b implies x + y € ¢(b).
From this we induce a map from A to A. WTS it is 1-1 and order preserving.

e Suppose b, b’ € A such that ¢(b) = ¢(b’). If b # b’, then without loss of generality, 3z € b such that
x ¢ b’. This implies ¢(z) € ¢p(b) = ¢(b’), thus Jy € b’ such that ¢p(z) = ¢(y),  # y. Thus,
ply—r)=0 = y—cr€a = y—zr=aca
for some a, thus
r=1vy-+a.
Since y € b’,a € a C b, so x € b’ ,contradiction. Hence ¢ is 1-1 map on A.
o If b Db/, then Vx € b’ C b, ¢(x) € ¢p(b) = ¢(b") C ¢(b). Thus ¢ is order preserving.
Also note that ¢>*1(@ is an ideal containing a; since ker ¢ = a, and if z,y € 35’1(5), d(x+y) = ¢(x)+d(y) €
b = x+yeol(b),andif x € A,y € $71(b), then d(zy) = ¢(x)d(y) € b = zy € ¢~ 1(b). O
Statement in p.3. f: A — B ring homomorphism, q be a prime ideal of B. Then, f~1(q) is prime in A.

Proof. Let f : A/f~*(q) — B/q in a natural way. Then it is well-defined since Z = 7 in A/f~*(q) if and
only if z = a+y for some a € f~1(q) if and only if f(x) = f(a) + f(y) in B if and only if f(Z) = f(j). Also,

it is injective since f(Z) = 0 implies f(z) € q implies = € f~'(q), thus Z = 0. Hence Im(f) is a subring of
B/q, which is integral domain, thus image is also integral domain, hence A/f~*(q) is integral domain, thus
f~1(q) is prime. O

Statement in p.4. Let {a,}acr is a chain, i.e. any two elements has inclusion relationship. Leta =, aq.
Then, a is ideal.

Proof. o Let z,y € a. Then, = € a,,y € ag for some a, 8 € I. From chain conditoin, either a, C ag or
0o 2 ag. Without loss of generality, assume a, C ag. Then, z +y € ag C a.

o Ifx € Ay € a. Then, y € a, for some «, thus zy € a, C a.

Corollary 1.4. Ifa # (1) is an ideal of A, there exists a mazimal ideal of A containing a.

Proof. A/a has maximal ideal by Theorem 1.3, say m. Then, if we let ¢ : A — A/a as canonical projection,
then m := ¢~!(m) is an ideal in A containing a, from proposition 1.1. If it is not maximal, then 3b such
that m C b C A. By proposition 1.1, ¢(b) is a proper ideal of A/a containing m, contradicting maximality
of m. O

Corollary 1.5. Every non-unit of A is contained in a mazimal ideal.
Proof. Let x be a nonunit. Then () is a proper ideal of A, apply corollary 1.4. O

Principal ideal is an ideal generated by 1 element. f is an nilpotent element if In € N such that
fr=0.

Proposition 1.11. 1) Let py,--- ,py, be prime ideals and let a be an ideal comtained in UY_p;. Then, a C p;
for some i.

Proof. Its contrapositive form is

agp;forallien] = ad Upi.

i=1

So if n = 1, then the RHS of the contrapositive form is equal to LHS, done. Suppose it is true for n — 1, and
supposet that a Z p; for all ¢ € [n]. Then, for each i, we have

a g p; for j € n]\{i} = aZ|Jp;
j#i



Hence, there exist x; € a such that z; & U;;Z p;. If x; & p; for some i € [n], then z; & |J;_, pi, so done.
Otherwise, x; € p; for all 7. Let

v=YI]=

i=1 j#i

Then, y € a but y € p; since each monomial is not in any p;. Done. O

Exercise 1.12. 1. aC (a:b)

3.
4.
b.

b)b Ca
(a:0):¢)=(a:be)=((a:c):b)
Qg - b) = ﬂi(ai : b)

2. (a:
(
(N
(a:32;bi) =Ni(a:b;).

Proof. 1. Vz € a, b C a, since ideal is multiplicatively closed.

2.
3.

Let z € (a:b). Then 2b C a by definition of (a : b). Thus, (a:b)b C a.
Let z € ((a:b):c). Then, zc C (a:b). So
rbe=xchb Ca

where first equality comes from commutativity and the inclusion comes from xzc¢ C (a : b) which implies
€ ((a:6) :¢). The inclusion gives x € (a : bc).

Also, if € (a: bc), then for any y € ¢,
zyb C xcb = xbc C a.

Thus z¢ C (a: b), which implies z € ((a: b) : ¢). And z € ((a:¢): b) is clear from

(zb)c C a.
Lastly, let z € ((a: ¢) : b). Then,

(zb)c Ca
holds, so x € (a : be), which implies z € ((a: b) : ¢) by above argument.
Let & € (N;a; : b). which is equivalent to xb C a; for all ¢, which is equivalent to = € N;(a; : b).

€ (a: ), b;) implies

which implies € N;(a : b;). Conversely, z € N;(a : b;) implies z € (a : b;) for all 4, which implies
xy,;b; C a, done.
O

Exercise 1.13. 1. r(a) 2 a

939"‘.“?5

r(r(a)) = r(a).

r(ab) = r(anb) =r(a) Nr(b).
r(a) = (1) <= a=(1).
r(a+b) =r(r(a)+r(b))
if

p is prime, then r(p™) = p for all n > 0.



Proof. 1. If ¢ € a, then 2! € a, thus done.

2. Tt suffices to show that r(r(a)) C r(a). Let € r(r(a)). Then, 2™ € r(a) for some n > 0, thus (™)™ € a
for some m > 0, which implies z € r(a) since ™" € a.

3. From ab C anb, we know r(ab) C r(aNb). Also, if z € r(anb), then In € N such that 2™ € anb,
which implies z € 7(a) N r(b). Also, if x € r(a) Nr(b), then 2™ € a,2™ € b for some n,m > 0, thus
ax™ € ab, hence = € r(ab). This implies

r(ab) Cr(anb) Cr(a)Nr(b) Cr(ab)
done.
4. if r(a) = (1), then 1" =1 € a, so a = (1). Conversely, use r(a) 2 a.

5. From first one we know a C r(a),b C r(b), thus
a+ b6 Cr(a)+r(b)

which implies 2™ € a+ b C r(a) + 7(b) implies 2™ € r(r(a) + r(b)). Conversely, if z € r(r(a) + r(b)),
then there exists n € N such that 2™ € r(a) + r(b). This implies " = ca + db for some ¢,d € A,a €
r(a),b € r(b), thus In,, ny € N such that a™ € a,b™ € b. Hence, by investigating terms in binomial
expansion of (z™)"«+™+1 we can conclude, (x™)"at™+l € r(a+b).
6. Let x € r(p™) implies z* € p™ for some k > 0, this implies x or =1 is in p, do the same thing at most
k — 1 time, we can conclude that x € p. Thus, r(p™) C p. And since any n-th power of element in p
should be in p™, so r(p™) 2 p, done.
O

Proposition 1.14. The radical of an ideal a is the intersection of the prime ideals which contain a.

Proof. We already know r(a) = (;5_1(9%,4/51)7 where fR is nilradical, and ¢ : A — A/a a canonical projection.
Since 9 ,4/4 is the intersection of all prime ideals in A/a, from the one-to-one correspondence and theorem
1.8 (preimage of prime ideal is prime), r(a) is intersection of prime ideals containing a. O

Proposition 1.15 (part of proof). D =r(D) = J,, Ann(z)

Proof. D C r(D) is clear from above exercise. If f € r(D), then f* € D, so f"h = 0 for some h € A, so
f(f*1h) = 0 implies f € D.

Also, f € D implies fo = 0 for some z € A\ {0} implies f € Ann(x). Conversely, if f € Ann(z), then
f € D. Since x was chosen arbitrarily, done. O

Proposition 1.17. f: A — B.
1. a Ca®,b Db
2. ae — aece bC — bCeC.

Proof. 1) Since f(a) C a®,
aC f7H(f(w) € f7'(a%) = a*.

Also, since f(f~1(b)) C b from multiplicative closedness of ideal, f(f~'(b))¢ C b.
2)
bc g (bc)ec

by 1) and b D b = b® D b°° since f~' preserve order of ideal. Similarly,
ae :_) (ae)ce
by 1) and a C a®® implies f(a) C f(a®®) which implies a® C a®®. O

Exercise 1.18. 1. (a1 + a2)¢ = a + as,



10.

2
3
4
5.
6
7
8
9

b1 + b2)¢ D b + b3,
a; Naz)® Ca§Nag

b1 N bz)c = bf N bg,

by1b2)" 2 bibS,
ar :az)¢ Ca$ :as,

bl : bg)c = b(ibg,

. r(a)¢ Cr(a®)

r(b)¢ = r(b°).

The set of ideals E is closed under sum and product, and C' is closed under the other three operations.

Proof. 1. y € (a1 +a2)® < y=> cif()+> d;f(B;) € af + a5

2.

10.

x € b§ + b§ implies = cxy + dxa, thus f(x) = cf(21) + df (x2) € by + by implies z € f~1(f(z)) C
F7H(b1 + ba) = (b1 + b2)©.

y € (apNag)® implies y = > ¢; f(x;) with z; € a1 Nas. Hence, f(x;) € a$Na§, which implies y € afNas.
x € (b1 Nbe)® < f(x) €by1Nby < f(x) €by and f(x) € by < x € b],b5 < = € b NbS.

y € (mag)® <= y = > ¢ f(x;y;) where z; € a1,y; € aa < y = >.c¢;f(x;)f(y;). Notes that
f(z:) f(y:) € afas, so it is equivalent to say that y € aas.

x € b{b = x =), cxy; for some z; € bf,y; € bg implies f(x) = >, ¢;f(x;:)f(ys) € byba, thus
z e f7H(f(x)) C (biba)°.

y € (a1 : a2)® implies y = > ¢; f(z;) for some z; € (a1 : az). Then, z;a2 C ay implies f(z;)f(a2) =
f(zia2) C f(ay) implies f(x;)as C af since (-)€ is just idealization, so inclusion of generating set implies
inclusion of ideal.

x € (b :b2)¢ = f(x)by Cby = f1(f(x))bS C b = b5 C b = = € (b :b5). The other
way is not true since f(b{) may not be b;.

yer(a) = y= 22:1 ¢if(x;) where " € a for some m; € N, thus all terms in the expansion of
y2=i ™+ should contain 27", which implies y2=: ™+ € a® = y € r(a®).

zerb) < f(x)erb) — fx)m cbforsomemeN < f(z™)€b < 2™ € b® <=
x € r(b°).
O

Exercises in Section 1

. Let x be a nilpotent element. Then 2™ = 0 for some n € N. Then

A4+z)1—z4+2>— 4+ (=D)"2") =1+ (-1 2" =1
Let u be a unit. Then, u !
u + x is unit.

x is still nilpotent, since (u=1z)" = u="z"™ = 0. Thus 1+ v~ 'z is unit, thus



2. (a) If f is unit, then fg =1 for some g = bg + b1z + - - - + b, z™. (Without loss of generality, assume
n > m.) Thus,

anpby, =0

Op—1bpy + apbyp_1 =0 = Anp—_1by + a%bm—l =0 = aibm—l =0

ap_9bm + apn_1bm_1 + apby_o =0 = aian,gbm + aian,lbm,l + af’lbm,g =0 = aibm,g =0

So if al™1b,,_, = 0 for some r = s — 1, then for r = s, the coefficient of fg with degree s is
Ap—sbm + anferlbmfl + -t anbp—s = aflanfsbm + azanferlbmfl +---+ afl—‘rlbmfs =0

and by inductive hypothesis, a,b, = 0,a2b, 1 = 0,-++ ,aSbym_si1 = 0 implies a3*t1b,_, = 0,
done. Hence, we can say that
a?-"_lbo =0

Since by is unit (since a;b; = 1 in the fg = 1) it means a™ " = 0 so a,, is nilpotent, which implies

—a,x™ is nilpotent (since (—a,z™)™T! = (=1)mHlgmFigm+ntl — () thus f — a,2™ is nilpotent
since it is sum of unit and nilpotent element, which is nilpotent by exercise 1. Thus, by applying
the same argument on f — a,x™, we get a,_1 is nilpotent, and applying it n — 1 times, we get

Qn,0n_1,- - ,a1 are nilpotent, done.
Conversely, if f = ag+ai1x+---+apz™ is an element in A[z] such that ag is a unit, and aq,-- - , a,
are nilpotent. This implies a;z*,7 = 1,--- ,n are nilpotent, thus f — ag is nilpotent, since set of

all nilpotent element is an ideal, thus it is closed under addition. Then, f is sum of unit and
nilpotent element, which is a unit by the exercise 1.

Note that there is more abstract version of the answer for if direction. Let p be any prime ideal.
Then, A/p is an integral domain, and we know that f € (A/p)[z] is a unit if and only if f = u
for some unit in A/p; to see this, otherwise, suppose f = @pa™ + - -- + @z + o with a,, # 0 is a
unit in A/p[z]. Then, there exists § = by + byx + - - - + b, z™ with b,, # 0 for m > 0 such that
fg = 1 implies b,, = 0, contradiction. Thus inverse element of f should be in A/p, and in this
case, ?_1@ # 0 if ?_1, so there is no such inverse element, contradiciton.

So, f is unit implies f is unit ( from 1 = ¢(1) = ¢(f- f~1) = ¢(f)o(f 1)), which implies f = u for
some u € A/p, and p is chosen arbitrarily implies ag is unit and aq,- - - ,a, are in the intersection
of all prime ideals, i.e., nilradical, which implies they are nilpotent.

(b) Suppose ag, - - - ,a, is nilpotent. Then, a;z* is nilpotent by the same argument used in the above
proof, so f is nilpotent. Conversely, if f is nilpotent, then f™ = 0 for some m € N, and f” has the
highest degree term a)'2™" = 0, thus a,, is nilpotent. Since nilradrical is closed under addition,

f — a,z™ is also nilpotent, and apply the same argument to conclude that a,_; is nilpotent. Do

the same argument on f — a,x™ — an,lx”’l, -+, so that we can get a,,--- ,ag are nilpotent.

Or, we can say that f is nilpotent, thus ¢(f) is nilpotent for any prime ideal p and ¢ : Alzx] —
A/p[z]. Since A/p is integral domain, so does A/p[z], hence ¢(f) = 0. This implies ag, - - , a, € p.
Since p was arbitrarily chosen, ag,- - - ,a, are nilpotent.

(c) only if part is just definition of zero divisor. So suppose f is zero divisor. Then, 3g = bg + b1z +
-+« +bypz™ such that fg = 0 and deg(g) is minimal for all other zero divisor of f. Then, a,b,, =0
thus deg(a,ng) = deg(g) — 1 and f(ang) = anfg =0, thus a,g = 0 from the minimality of g. Now
suppose that a,_s9g =0 for s =0,1,--- ,7 — 1. Then,

fg = (a0+a1.’£+' : ’+an7571xn7871)g"’_(anfsxnis"_' : +anxn)g = (a0+a1$+' : ‘+an7571xnisil)g

thus a,—s—1b,, = 0, which implies deg(a,—s—19) = deg(g) — 1 and a,,_s_1¢ is also zero divisor of
f, thus a,—s—19 = 0, which implies a,,_,g = 0. This implies a;b,, = 0 for all i € [n] U {0}, which
implies b, f = 0.



(d) Let a= (ag, - ,an),b = (bo, -+ ,bm), and let ¢ = (agby, a1bg + agby,--- ,) an ideal generated by
coefficients of fg. Then the statement is equivalent to say that

a=(1)=b < c=(1)

Note that all generator of ¢ is in a and b. Thus, ¢ C anb. Thus, if ¢ = (1) then a = (1) = b.
Conversely, suppose a = (1) = b, but to get a contradiction, ¢ # (1). Then, take a maximal ideal
m containing c¢. Then, by sending fg from A[z] to A/m[z], fg — 0 since m contains all coefficient
of fg. However, f and g are not zero in A/m|z], since if those are zero, then coefficients of f or
those of g should be in m, contradicting the assumption that a = (1) = b. Thus f,g are zero
divisor in A/m[z]. However, A/m is a field, so A/m[z] is an integral domain, which implies no
zero divisors exist, contradiction.

3. (a) In multivariate case, use abstract argument; Let p be any prime ideal. Then, A/p is an integral
domain, and we know that f € A/p[xy,--- ,x,] is a unit if and only if f = u for some unit in A/p;
to see this, suppose f contains a term ¢z with 7 is not a zero vector in N™ and ¢ # 0. Then
for any g with g # 0, let a highest degree term of g as dz™ and d = 0, then fg should contain

cdzmFm’ = 0, which implies ¢d = 0. However, A/p is an integral domain, this implies either ¢ or

d is zero, contradiction. Thus, coefficients of f which is not a constant term should be in p, and

the constant term should be unit. Since p was arbitrarily chosen from the set of all prime ideals

of A, and the intersection of prime ideal is nilradrical, we can conclude that all coefficients of f

except constant term are nilpotent, and the constant term is a unit.

Conversely, if f has a unit constant term and all nilpotent coefficients, then note that nilpotent

coefficient times & is also nilpotent, so f is sum of unit and nilpotent in A[z], thus f is a unit

by the exercise 1.

(b) Still, the only if part is just derived from that nilradrical is an ideal, thus closed under addition.
So suppose f is a nilpotent. Then, for any p, a prime ideal, f on A/p[Z] should be zero, since f
is nilpotent implies f™ = 0 for some n € N, therefore ¢(f)"™ = 0 implies f = ¢(f) = 0. Hence, all
coefficients of f should be in p, and since p is arbitrarily chosen, all coefficients of f should be in
nilradrical.

(c) Still, only if part is just satisfy definition of zero-divisor. Suppose f is zero divisor. We use
induction. Note that the statement holds for A[z;]. Now suppose the statement holds for

Alx1, -+ ,xp_1]. Then,let f € Az, -+ ,xz,]is azero divisor. Since A[zq, -+ ,z,] = Alx1, -+, Zpn_1][xn)
hence we can think of f as a polynomial of x,, having coefficients from A[zy, -+ ,z,—1]. So let
m
= ci(zy,- - ,xn_l)xfl.
i=0

Then from the inductive hypothesis, for each ¢;, there exists b; € A such that b;c; = 0. Thus let
b=T1I",. Then, bf = 0 since bc; = 0 for all i.

(d) Still, if we let a, b be an ideal generated by coefficients of f and g respectively, and let ¢ be an ideal
generated by coefficients of fg. Then by construction, ¢ C anb, thus ¢ = (1) implies b = (1) = a.
Conversely, suppose b = (1) = a but ¢ # (1). Then, by applying the same argument above, we
can get a contradiction.

4. From the fact that every maximal ideal is prime ideal, the Jacobson radical in A[z] should contain
nilradrical. So suppose f is in the Jacobson radical. It suffices to show that f is nilpotent. From
proposition 1.9, 1 4+ zf is a unit in A[z]. By the exercise 2, all nonzero coefficients of xf should be
nilpotent. This implies all coefficients of f is nilpotent, hence f is nilpotent by the exercise 2, done.

5. (a) If f(z) is unit in A[[z]], then g € A[[z]] such that fg = 1. Thus if we let g = > .° b;z’, then
aogbg = 1. Hence, ag is unit in A.

Conversely, suppose ag is unit. Then notes that for any g = Z;’ZO bzt

oo i )
fg = Z Z ajbi,j x'
i=0 \j=0



Thus it suffices to find some g such that Z;:O a;jb;_; = 0 for all i > 0. Notes that

7 i—1 i—1
—1
0= E (ljbi,j = apb; + E ajbi,1 = b; = Qg E ajbi,l.
=0 i=0 i=0

So recursively we can determine b; from by = a, 1 and the above equation.
(b) To do this, we claim
Claim I. If R is integral domain, so does R][x]].

Proof. If f,g € R][z]] with nonzero coeflicient, then let az™ and baz™ are the smallest nonzero
elements in supports of f and g respectively. Then fg = abax™t™+ highest order terms, thus

fg#0. O

Suppose f is nilpotent. Then f™ = 0 for some n € N. Fix p a prime ideal and ¢ : A[[z]] — A/p[[x]].
Then, ¢(f) is zero since ¢(f) should be nilpotent. Since p was arbitrarily chosen, all coefficients
of f are nilpotent.

Converse is not true in general. See [1].

(¢) Suppose f is in the Jacobson radical of A[[z]]. This is equivalent to say that for any g € A[[z]],
1— fg is unit, by Proposition 1.9. This is equivalent to say that 1 — agc is unit for all ¢ € A which
is constant part of g, by exercise 5 i). This is equivalent to say that ag is in the Jacobson radical.

(d) Notes that A = A[[z]]/(z). Hence ¢ : A[[z]] — A is canonical projection, thus there is one-to-one
correspondence from ideal of A and ideal of A[[z]] containing (z). Now we claim that = € R, the
Jacobson radical of A[[z]]. This is because for any f € A[z]], 1 — xf is unit by Exercise 5 i).
Hence every maximal ideal m of A[[z]] contains z.

Also, we claim that if ¢ : A — A[[x]] as canonical injection, then 1~(m) = ¢(m). To see this,

notes that for any f € A[[z]] with f = ao+ > o, a;x’, ¢(f) = ap and Y~ (f) = go if f = ao .
0.W.

This implies ¢y~ (m) C ¢(m). Now let f € m, with f = ap+)_;0; a;a’. Then, > ;°, a;z" € (z) Cm
implies ag € m, hence ag € ¥~ (m). This implies 1) ~(m) 2 ¢(m), done.

Thus, from these claim, m¢ = ¢~1(m) = ¢(m), and since ¢ preserves order of ideals by inclusion,
m€ is still maximal. Also, m contains m® by above construction, and also contains x, thus m O
(m¢, z). Conversely, if f € m, then it has constant part and zg part for some g € A[[z]], thus
f € (m® ). This shows m = (m¢, x).

(e) Let p be a prime ideal of A. We claim that (p,z) is a prime ideal in A[[z]]. To see this, think
about A[[z]]/(p,z). If ¢ : A[[z]]] — A[[z]]/(p,z), then for any f = >"° a;z’, ¢(f) = ¢(ao), and
¢(ag) = 0 if and only if ap € p. We claim that A[[z]]/(p,x) = A/p; notes that all elements in
Al[z]]/(p, z) can be denoted by ¢(ag) for some ag € A, so take a map ¢(ag) — ag. It is well-defined
since if ¢(a) = ¢(b) for some a,b € A, then a + f = b for some f € (p,x), thus f € p, otherwise
a+ f is not in A. This implies @ = b. Also it is injective since b = 0 implies b € p, thus ¢(b) = 0.
Also surjectivity is clear.

Hence, from this isomorphism, we know that A[[x]]/(p,z) is integral domain. Thus (p, x) is prime
ideal. And contraction of (p,z) is p, since (p,2)° = (p,z) N A =p. ,

6. Let J be the Jacobson radical and R be nilradical. Suppose J 2 PR. Then, it contains e € J \ R such
that €2 = e. Now e¢(1 —¢) = 0, and 1 — e has a form 1 + ze for some x = —1 € A, thus 1 — e is unit in
A by Proposition 1.9. Hence, e = 0, contradiction. This implies J = fR.

7. Let J be the Jacobson radical and R be nilradical. Suppose J 2 fR. Then, it contains xz € J \ R
such that 2" = x for some n € N. Now x(1 — 2" ') = 0, and 1 — 2”1 has a form 1 + zy for some
y=—2""! € A, thus 1 — 2"~ ! is unit in A by Proposition 1.9. Hence, z = 0, contradiction. This
implies J = R. It implies all prime ideals are maximal ideal, otherwise J # fR.



10.

11.

12.

13.

Let o be the set of all prime ideals. Then 0 € o, so it is nonempty. Give inverse inclusion as an order.
Then, a chain of prime ideals has maximal element, which is the intersection of all prime ideals in the
chain. Actually, the stating that intersection is prime is not trivial; let {p;};cs is such a chain for some
index set I, and let xy € (),c;ps but 2,y & (\;c;pi- This implies that there exists p;,pp such that
x & pj,y € pr. From the chain condition, we can assume that j < k, thus z,y ¢ p;. This implies
xy & pj, thus xy & (), s C pj, contradiction. Thus the intersection of all prime ideals in the chain
is prime. Thus each chain has the upper bound. By Zorn’s lemma, ¢ has a maximal element, which is
a minimal element in the set of all prime ideals, i.e., Spec A.

If a = r(a), then by Proposition 1.14, done. If a is intersection of prime ideals, say a = [, p;, then
x™ € a implies 2™ € p; for all 4, thus = € p; for all i, thus « € (), p; = a. This implies r(a) = a.

i) implies ii): i) implies nilradical is the only one prime ideal, say p. Also it implies that Jacobson
radical is equal to nilradical. Thus, if € p, then z is nilpotent; otherwise, z € A\ p. If x is not a
unit, then x is contained in some maximal ideal which is p, contradiction. Hence x is unit.

ii) implies iii): notes that nilradical has all nilpotents elements, so outside of the nilradical, every
elements is a unit. Apply Proposition 1.6 i) to get the nilradical is maximal ideal and A is local ring.

iii) implies i): Notes that nilradical is maximal ideal. Thus if p is prime ideal in A, then p should be
nilradical; thus there is only one prime ideal.

(8) (—2) = (-2)2 =2 = 2.

(b) Let p be an ideal that is not contained in the nilradical. Then it has a nonzero element which is
not in nilradical. Also, such element is nonzero idempotent, since it is Boolean ring. By Exercise
6, nilradical is equal to the Jacobson radical, thus every prime ideal is maximal.

(c) Let a = (a,b) and ¢ = (a + b+ ab). Then, ¢ C a. Now notes that a(a + b+ ab) = a® + ab + a?b =
a+2ab = a, and b(a+ b+ ab) = b? + ab+ ab? = b+ 2ab = b. Hence ¢ = a. Now use induction; let
a = (a1, - ,a,) and suppose that any ideal generated by at most n — 1 elements are principal.
Then, a = (a1 + a2 + ajas,as,- -+ ,a,) by the same argument. Now apply inductive hypothesis.

If the local ring contains a nonzero idempotent except 1, say e, then e is nonunit, since it is zero
divisor, i.e., e(e — 1) = 0; so if it is unit, then e~te(e — 1) = 0 = e = 1, contradiction. Thus by
Corollary 1.5, it is contained in a maximal ideal. Since A is local ring, it is contained in the maximal
ideal, which is also a Jacobson radical. However, this implies that 1 — e is unit, since 1 — e has a form
1+ xe with x = —1, and Proposition 1.9 says that element with such form is unit. This also gives us
e(e —1)(e — 1)~! = 0 implies e = 0, contradiction.

We use Proposition V. §2, 2.3. in |2|, which stating that for f € K[z]| where k is a field, there exists a
field extension such that f has a root.
If o« = (1), then

1= Z f’i(':l:fi)gfi
i=1

for some f; € K[z] and g5, € A. Since each gy, are also polynomials, they are in some polynomial ring
with finite number of variables. So we can assume that gy, = gy, (zy,, -,z ) for some fr4q, -, fn €
Klz]. Just write f; to 4 for simplicity. Then,

1= Zfi(fﬂi)gi(l’h “ TN
i=1

Now by applying Proposition 2.3 in [2] n times, we can get a finite field extension such that fi, -, fn
has a roots. Say roots of f; be a;. Also let a; = 0 if n < i < N. Then, replacing x; with a; gives
1 = 0, contradiction.

The rest step is to show that L is a field. If a,b € L, then there exists n such that a,b € K, so any
operation on fields well-defined in L. Also, every f € o has all of its roots in L by construction, so
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15.

16.

it splits into linear factors. Now take subset of L having all algebraic elements over K. Say it K.
Then definitely, every polynomial in K [x] splits into linear form, since each of this polynomial can be
regarded as polynomial over K, [z] for some n. Thus it is algebraic closure of K.

Notes that 0 € o, so it is nonempty. Now take a chain {a;};c; for some index set I. Then, their union
is also an ideal in which every element is a zero divisor; to see this, let x,y be in the union. Then,
from total ordering, there exists ¢« € I such that x,y € a;, hence their sum is also in a;, done. Thus, by
the Zorn’s lemma, there exists a maximal element in .

Let m be a maximal element of ¥. To see that it is a prime ideal, let xy € m. Notes that zy is zero
divisor, so there exists nonzero element a such that xya = 0. This implies  and y are zero divisors,
since x(ya) = 0 and y(xa) = 0 with nonzero ya and xa respectively. Thus, m+ (x), m+ (y) are an ideal
in which every elements are zero divisors, but from maximality of m, m + (z) = m = m + (y), which
implies x € m or y € m, hence m is prime.

(a) From definition of a = (F), any prime ideal containing E also contain a and vice versa. Thus,
V(E) = V(a). And any prime ideal containing r(a) also contain a. So it suffices to show that
V(a) 2 V(r(a)). Let p € V(a). If x € r(a) , then ™ € a C p for some n. This implies = € p from
the property of prime ideal. Done.

(b) V(0) = X is clear; every ideal contains 0 as its subideal. V(1) = is also clear; since no prime ideal
contains 1 as its element.

(c) Let p contains | J;.; Es. Then it contains Ej; for all I, thus p € (),c; V(£;). Conversely, let
p € Nies V(E;). Then it contains E; for all I, done.

(d) Follows from Exercise 1.13 ii) stating that r(ab) = r(anNb) = r(a) Nr(b).

Notes that

Spec(Z) = {(p) : p is prime in Z or p = 0} = {(0),(2), (3),(5),---}
Spec(R) = {(0)}

For Spec(Clz]), notes that C is a field, hence C[z] is a principal ideal domain. Thus, let (f) be a prime.
If f is reducible, then f = gh for some g, h € C[z] thus (f) is not a prime; since f is polynomial with
minimal degree in (f), and g and h has a degree less than f. Now if deg f = 0, then f = 0, otherwise
(f) = (1), done. If deg f > 2, then f splits into linear forms, since C is algebraically closed field. Thus,
(f) is not prime. Hence only nonzero prime ideal occurs when f is linear form (x — a). Thus,

Spec(C) = {(z — a) : a € CYU{(0)}.

We can think it as C with big points (0) whose (Zariski) closure is whole Spec(C).

For Spec(R][z]), also it is PID. Hence (f) is prime ideal if and only if f is irreducible. And their are
two irreducible polynomials with respect to degree; f is linear form x — a, or f is degree 2 polynomial
f = 2% + px + ¢ such that p? — 4¢g < 0. Hence we can think it as a picture of R with big points (0),
and {(p,q) € R? : p> — 4q < 0}.

For Spec(Z]x]), take two maps ¢ : Z — Z[z] and 9 : Z — Z/(p) for each p = 0 or prime. Then, it gives
us a below commuting diagram

Spec(k(p)[z]) —— Spec(Z/(p))

| I

Spec(Zx]) — Spec(Z)

where k(p) is a residue fields of (p). (To see that Spec(k(p)[z]) is a pull back of two maps ¢. and ., if
p # 0, then k(p) = Z,. Hence, there is a natural projection Z[z] — Z,[z] and an injection Z, — Z,[x].

10
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Thus from the map
z—Y 7,
[

Lz] —— Zpla]

which are commutes and a pullback, we can get above pullback. (To see this concretely, let a be an
ideal in Zj[z]. Then, sending a to Z,, gives aNZ,, which is 0 if a contains no constant, or (1) if it has a
nonzero constant. Also sending a to Z[z] gives an ideal b containing a and containing (p). Notes that
if a contains a nonzero constant ¢, then (p) + (¢) is contained in b, thus b = (1) since (p) + (¢) =1 by
Bezout’s theorem. Otherwise, b NZ = (p). So b sends to an ideal containing (p) or Z, and a N Z, also
sent to an ideal (p) or Z. Thus Spec(Z,[z]) satisfies the condition as a pullback of two maps ¢, ..

Similarly, if p = 0, then k(p) = Q, thus we can do the same analysis.
Hence, Spec(Z[z]) = {(p, f) : f € Z[z] and irreducible at Zp[2]}pyespecz2ULf € Z[x] : irreducible over Q[x]}.

Notes that the first contains zero ideal and corresponding to pullback Spec(Z,[z]). The second part
corresponds to pullback Q[z], a fiber of the zero ideal.

To see Xy form a basis of open sets for Zariski topology, first of all, they cover Spec(A); just take f
be a unit, then
Xr=V(f)¢=V(1)° = 0° = Spec(A).

Thus, we need to check that for any two open sets Xy and X, has nonzero intersection and if p is in
the intersection, then there exists X; containing h and contained in the intersection. To get this, notes
that p do not contain f and g. So take Xy,; then from V(f),V(g) C V(fg), X¢, Xg 2 Xyg, which
implies X N X, contains X,. Also, since p do not contain f and g, neither does fg, otherwise from
the prime ideal property, one of f and g should lie in p, contradiction. Hence p € X,.

(a) We already show that Xy, € Xy N X,. Let p € X¢,. Then, by the same argument, p doesn’t
contain f and g, thus p € Xy N X,. This implies equality.

(b) Suppose Xy = (). It is equivalent to say that every prime ideal contains f. It is equivalent to say
that f is in the intersection of all prime ideals, i.e., nilradical.

(c) Xy = X is equivalent to say that no prime ideal contains f. This is equivalent to say that f is
unit; (If f is unit then no prime ideal contains f. Conversely, if no prime ideal contains f but if f
is nonunit, then (f) is proper ideal, thus by Corollary 1.5 there is some maximal ideal containing
f, contradiction.)

(d) Xj =X, if and only if V(f) = V(g) if and only if r(f) = r(g).

(e) To see this, let {U;}ier be an open cover of Spec(A). Then actually using basis we can find more
finer open cover consisting of X s, say {X} ey for some index set j. This implies

Spec(d) = | Xr = |J V(H)° = (V)

feJ feJ fed

by De Morgan’s law. Which implies

AvinH=e

feJ
This implies that (J) = (1). To see this, suppose not; then (J) is proper ideal, so by Corollary
1.5 there exists a maximal ideal containing (J), say m. Then m is prime and contains all f € J,
which implies m € ;. ; V(f) = 0, contradiction.

Hence, 1 = Z;.Lzl a; f; for some f; € J and a; € A. This implies that

J

v =vIUJinn =o.

1

11



where first equality comes from Exercise 15 ii), and second equality comes from the fact that
1 =37 a;fj. This implies Spec(A) = (ﬂ?zl V(fj)) = Uj_, Xy,, which is finite subcover,
done.

To see that each Xy is quasi-compact, let {Xy, };er be an open cover of X;. Then, X; =
Uier X5,N X = U,;e; Xy - Thus for simplicity, replace f f; with f; so that assume Xy = (J,o; Xy,
This implies

iel

vipr=Uviur =V = viH =V =V

iel iel iel iel
where last equality comes from Exercise 15 ii). This implies that r(f) = r({fi}icr, thus f* =
>_jes a;f; for some finite subset J of I for some n € N. Thus, for any prime ideal p € V (U, {fi}),

"€ (U;e 1fi}) implies f™ € p thus f € p by prime property. Hence, V(f) 2 V(U,c,{fi}). This
implies

C
v =x v = (7)) = Ui =Y,
icJ icJ icJ i€J

Thus Xy C Uses X5 © Uier Xp = Xy implies Xy = U
any open conver. Hence it is quasi-compact.
Let O be an open subset of X. If O is a finite union of sets X, say O = Uje, Xy, for some finite
index set J, then finite union of compact set is compact. (Or say that each open cover of O is
also an open cover of Xy for each j € J, thus pick finitely subcover of Xy, for each j and collect
them.)
Conversely, suppose O is quasi-compact. then since {X} is a basis of given topology and O is
open, we can say O = | J,o; Xy, for some (maybe infinite) index set I. Thus {X}, }ies is an open
cover of O, hence we can take finite subset .J of I such that O C | J,;.; Xy, from quasi-compactness.

Hence
oclUx.clUxn=0
icJ icl

ics Xfi, 50 Xy has a finite subcover for

implies O = (J;.; Xy,, a finite union of sets X;.

18. Prove ii) first. Then use ii) to prove i). Before begin with this problem, we just mention that from
the exercise 15, the Zariski topology is precisely a topology whose closed sets are of form V(E) for any
subset E of A.

(a)

If p,. is maximal, then V' (p,) = {x}; if there exists a prime ideal containing maxima ideal p,, then
by maximality it should be p, itself. Hence, {x} is closed. Conversely, let {z} be closed. Then,
{z} = V(F) for some E C A. Then p, contains E. Also, notes that z € V(p,) C V(F) = {z}
implies V(p,) = {z}. Hence if p, is not a maximal, then by Corollary 1.5, there is a maximal
ideal m containing p, properly, thus m € V(p,), which implies m = p,, contradiction. Hence p,
is maximal.

V(p,) contains = and is closed. Thus V (p,) 2 {z}. Conversely, {x} = V(E) for some subset E.
Then V(p,) C V(£) implies p, 2 E. Thus for any other prime ideal p containing p,, it contains
E, thus V(p,) C V(E) = {z}, done.

If y € {z}, then y € V(p;) by ii), thus p, contains p,. Conversely, if p, contains p,, then
py € V(pz) = {x} by ii).

If x,y are distinct point of X, then @er Pz & py or p, C p,. Without loss of generality, assume
Pz € py. Then, y & {z}. Thus, X \ {z} is an open set containing y but not z.

19. Suppose the nilradical is prime. Let O; and Oy be two open sets. Then using basis we can take
nonempty Xy, and Xy, which are subsets of O and O, respectively. Then, fi, fo are not nilpotent by
Exercise 1.17 ii), so they are not in nilradical. Thus f; fo are not in the nilradical. Hence, 0 # Xy, p, =
Xf] meQ g 01 QOQ, done.

12
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21.

Conversely, suppose X is irreducible. It suffices to show that for any fi, fo which are not niilpotent,
their product is also not nilpotent. From given not nilpotent condition, Xy and Xy, are nonempty
open sets by Exercise 1.17 ii). From the irreducibility condition, Xy, N Xy, is also nonempty, thus fi fo
is not nilpotent, done.

(a) Let U be a nonempty open set in Y. Then, U NY is also open in Y by subspace topology, thus
UNY is dense in Y as a subspace topology. Thus its closure is equal to closure of Y, which
implies

Y=UNYCU=Y = U=Y,
done.

(b) Let ¥ be a set of all irreducible subspace containing Y, which is an irreducible subspace of Y.
Then, Y € X, so it is nonempty. Give an ordering by inclusion, and take a chain. Then, union
of all irreducible spaces, say T' = |J,, T for some chain {T,} irreducible; to see this, let U be an
open set in T. Then, U N T, is open in T, for any «, thus closure of U NT, is T, for each «.
Then,

T=Jr.=JUNT.cT

implies U = T. Thus by the Zorn’s lemma, ¥ has a maximal element.

(c) Let ¥ be a set of all maximal irreducible subspaces of X. First of all, it is closed since for any
T € %, its closure is also irreducible space, but by maximality, T = T. Also, it covers X, since
a singleton in X is irreducible as a subspace topology. (Notes that topology of singleton {z} is
{0, {z}}, thus only nonempty open set is {z}, which are definitely dense.) This implies that each
singleton is contained in a maximal irreducible subspaces.
In a Hausdorff space, every irreducible space is singleton; to see this, let Y be any set strictly
containing some singleton {x}. Then, for any z € Y \ {z}, there exists two disjoint open sets U,
and U, in X such that z € U,,z € U,. Thus, U, NY and U, NY are two open sets in Y (as
a subspace topology) which are disjoint. Thus Y is not irreducible space. So every irreducible
components of a Hausdorff space is singleton.

(d) We claim that every irreducible closed subset is exactly of form V(p) where p is prime. If it

holds, then for any irreducible space, its closure is of form V(p) from the Exercise 15 saying that
every closed set in the Zariski topology is of form V(E). Thus, the maximal irreducible set is just
maximal irreducible closed subset, which is of form V(p) where p is minimal prime; otherwise,
there is a prime p’ which contained in p thus V(p’) 2 V(p), hence not a maximal.
To see the claim, let V(E) be an irreducible closed set. We can assume that V(E) = V(1)
for some radical ideal I generated by E. If I is not prime, let a,b ¢ I but ab € I. Then
V((I,a)) UV((I,b)) = V((I,a) N (I,b)) = V((I,ab)) = V(I) from Exercise 15 iv). However,
neither V(I,a) = V(I) nor V(I,b) = V(I). This implies V(I) is not irreducible space.

Notes that I implicitly use the fact that

Claim II. Y is irreducible space in X if and only if Y cannot be covered by two proper closed sets.

Proof. To see this, Suppose Y cannot be covered by two proper closed sets. Let U and Vbe two
arbitrary non-empty open sets of Y. Suppose U and Y has empty intersection, i.e., disjoint. Then,
their complement are two proper closed subsets whose union is Y by De Morgan Law. Thus one of U*¢
or V¢ contains Y, which contradicting the fact that U and V are two nonempty sets.

Conversely, suppose Y is irreducible. Let F, G are two proper closed sets whose union is Y. Then their
complements are two open sets whose union is emptyset, by De Morgan Law, contradiction. O

(a) Let f € A. Then notes that for any = € Yy5) = V(¢(f))¢, which implies p, does not contain

&(f), thus ¢~ 1(p,) does not contain f. (If f € ¢~ (ps), then ¢(¢p~1(z)) C p, contains ¢(f),
contradiction.) Hence ¢~ (p,) = ¢*(2) € Xy. Thus, Yypy C (¢%) 1 (Xy).
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Now let y € (¢*)"'(Xy). Then, ¢*(y) € Xs. This implies ¢—!(p,) does not contain f. Thus,
#(¢~(py)) C y does not contain ¢(f). This implies p, does not contain @(f). (Otherwise, if
o(f) € py, then ¢~*(p,) contain f, contradiction.) Hence p, € Y5

Let 2 € (¢*)"*(V(a)). Then, ¢~*(p,) € V(a), thusa C ¢~ (p,). Hence, ¢(a) C ¢ (¢~ (pz)) C pa-
Which implies a¢ C p,.. Hence = € V(a®).

Conversely, let y € V(a®). Then p,, contains a®, which implies ¢~*(p,) contains a, thus ¢~1(p,) €
V(a). Thus, ¢*(y) € V(a), which implies y € (¢*)~1(V(a)).

Let x € ¢*(V(b)). Then there exists y € V(b) such that ¢(y) = x. This implies p, = pj,. Since p,
contains b p, = pj contains b°. Thus z € V(b°). From the closedness of V' (b¢),

¢*(V (b)) € V(b°).

Conversely, from closedness of ¢*(V (b)), ¢*(V (b)) = V(a) for some ideal a of A. Then, by ii),

V(a®) = (@)1 (V(a) = (6") (0" (V1)) 2 (6") (6" (V (1)) 2 V().

This implies
a® Cr(b).

Thus for any f € a, ¢(f) € a® C r(b), thus ¢(f™) = ¢(f)™ € b for some n € N, which implies
f™ € b°. Hence a C r(b°). Thus

¢*(V (b)) = V(a) 2 V(r(b%)) = V(b°).

First of all we claim that

Claim III. II] ¢ : A — B is a ring isomorphism, then ¢* is homeomorphism.

Proof. If ¢ is a ring isomorphism, then we have an inverse map ¥ : B — A. Now ¢* and ¢¥* are
inverse to each other, since ¢* o ¢*(x) = ¢~ op = (x) = 1 o ¢(z) = x. And they are continuous
by i). Thus ¢ has an inverse map which is also continuous. Thus it is homeomorphism. O

By isomorphism theorem, A/ker(¢) is isomorphic to B as a ring. Hence, ¢* on B induces a
homeomorphism between Spec(A/ ker(¢)) and Spec(B). (Notes that the given map sends open
to open and closed to closed.) Now Proposition 1.1 implies that Spec(A/ker(¢)) and V (ker(¢))
has order preserving 1-1 correspondence induced by the projection map. Thus it suffices to show
that this map is homeomorphism. To see this, we can use the fact that bijective continuous map
is homeomorphism iff it is open or closed map.

Let F be closed set in A/ker ¢. Then F' = V(a) for some ideal a in A/ker(¢) corresponding to
an ideal a in A by Proposition 1.1. Let 7 : A — A/ ker(¢) be the canonical projection map. We
claim that 7*(F) = V(a). If it holds, then 7* is bijective continuous and closed map, thus it is
homeomorphism.

Let y € 7*(F). Then, y = 7*(z) for some x € F. This implies p, = pS. Also p§ contains a° = a
since p, contains a. This implies p, contains a, hence y € V' (a). Conversely, if y € V(a), then p,
contains a. Also, by Proposition 1.1 p, = pg for some p, in A/ker(¢). Hence, ¢(p,) = p, and
¢(a) = a. This implies p, contains a. Thus y = 7*(z) and from x € V(a) implies y € 7*(V(a)) =
7*(F). Hence 7* is closed map, thus done.

From iii),

¢*(Y) = ¢*(V(0)) = V(0°) = V(ker(¢)).
Thus, ¢*(Y) is dense if and only if V(ker(¢)) = X if and only if ker(¢) C p for all p € X if and
only if ker(¢) C fR.

Yo (2)=(od) H(2) = ¢ 0T (2) = 9" 07 (2).
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22.

(g) Notes that Spec(A) = {p,0}. Now think about Spec(B); notes that A/p has only 0 as a prime

ideal since it is a field, and so does K. We claim that

Claim IV. IV Every ideal in direct product of (unital commutative) ring is direct product of two
1deals in each ring.

Proof. Let R, S be a two such rings, and let I be an ideal of R x S. Then, I, a projection of I
onto R is also ideal; to see this, let 7' € Ir. Then, 3s,s’ € S such that (r s),(r',s") € I, hence
(r+1',s+s') € I therefore r + 1’ € Ig. Also, for any a € R and r € I, there ex1sts s € S such
that (r,s) € I, hence for any s’ € S, (a,s') - (r,s) = (ar,s's) € I, thus ar € Ir. We can do the
same argument to show that Ig is also an ideal, thus I = Iy x Ig. O

Thus, since all ideals in A/p is (1) and (0), and all ideals in K is K and (0). Hence B has four
ideals, B, (0), and q; = (0) x K and q2 = (1) x (0). Notes that q; = {(0,k) : k € K},q2 = {(a,0) :
ac A/p}.

Also, if (a,k)(a’, k") € g1, then one of a or @’ should be zero, this implies one of (a,k) o (a’, k')
lies in q;. Thus q; is prime. By the similar argument, g5 is prime. Notes that (0) is not a prime
in Bj; since (a,0)(0, k) € (0) but a, k are nonzero. Thus,

Spec(B) = {q1, 92}

Then, ¢~1(q1) = p, ¢~ '(q2) = 0. Hence, ¢* is bijection. However, it is not homeomorphism. To
see this, notes that Spec(A) has three closed sets, {0,p}, {p}, and 0. {0} is not a closed set, since
V(po) = V(0) = Spec(A) since p also contains 0. However, Spec(B) has discrete topology; to see
this, notes that V(q1) = {a1},V(q2) = {92}, V(0) = Spec(B),V(B) = 0. Thus, (¢*)({a2}) = {0}
implies that ¢* is not a closed map, hence ¢* is not homeomorphism.

Notes that zero ideal is prime if the ring is integral domain.

(a) (First problem) Let X; := {A; x -+ X Aj_1 X p X Ajy1 X --- X A, : p € Spec(A;)}. First of

all, we claim that X; as a subspace of Spec(A) has the topology homeomorphic to Spec(4;).
Before starting the proof, it is clear that A; x -+ X A;_1 X p X A;41 X -+- X A, is prime in A; if
(a,xz,a’)(b,y,b’) is in the prime ideal, then either x or y should lie in p, thus either (a,x,a’) or
(b,y,b') liesin Ay X -+-- X A;_1 X p X Aj41 X -+ X Ay, done.

To see this, let ¢; : A; = Aby z — (1,---,1,2,1,--- ,1). Then, ¢} : Spec(4) — Spec(4;) is
continuous map, thus ¢f|x, : X; — Spec(4;) is also continuous map. Now, notes that any closed
set in X; has a form V(E) N X; for some subset E of A. Hence E = [[}_, E; for some E; C A;,
hence V(FE) N X, is a set of all prime ideals in X; containing E;, which implies ¢ (V(E) N X;) =
{p € V(E;)} = V(E;). Thus, ¢* is closed map. Moreover, ¢} is bijection, since ¢ (A4; X --- X
Ai1 X px Ajy1 X -+ X Ay) = p which gives an injection, (two distinct elements in X; has
two distinct prime ideal part of i-th position, thus their image is different.) Also every prime
ideal in A; is also image of ¢* by construction. Hence ¢* is bijectively continuous and closed
map. Hence it is homeormorphism. (Notes that m; : A — A; gives the inverse map; since
7'('71(]3) =A; x---x A1 X p XAi+l X e XAn)

Now we claim that Spec(A4) = II}_; X;. Notes that actually as a subset, X; N X; = 0 if i # j,
since A; and A; are not prime. Thus it suffices to show that Spec(A) = |J_, X; and to check
its disjoint topology structure, i.e., subset U of Spec(A) is open if and only if 7~ *(U) is open in
Spec(A;), where m; : A — A; be canonical projection. This statement is equivalent to saying that
subset F of Spec(A) is closed if and only if 7}~ *(F) is closed in Spec(4;). (To see this, notes that
LHS is equivalent to say that U° is closed, and RHS is equivalent to say that 7} ' (U°) is closed,
from the injectivity of the map 7.)

To see that every prime ideal in Spec(A) has a form A x «-- X A;_1 X p X Ajy1 X -+ X Ay, let
P be a prime ideal in A. Let ey, -+, e, be an element such that e is k-th position is 1 and the
other positions are zeros. Then, if P has all e;, the P = A, not a prime. So P doesn’t have some
e;. Fix the smallest e; which is not in P. Then, for any j # 7, e;e; = 0 € P implies e; € P.
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Hence, P = Ay x---x A;_1 Xp X Aj41 X --- x A, where p is projection of P onto A;. To see that
p is prime ideal in A;, notes that

A/P = Al/Al X e X Aifl/Aifl X AZ/]J X Ai+1/Ai+1 X oo X An/An = Az/p

is integral domain. Thus p should be prime ideal.
To see that Spec(A) has a disjoint union topology, let F' be a closed set in Spec(A). Then

F = V/(E) for some subset E = [[;_, E; of A. Then
oY V(E) =m Y (V(E)N X;) = {mi(x) : 2 € V(E) N X;} = {p € Spec(A;) : E; C p} = V(E).

7 2

Conversely, let F' be a set such that 77~ !(F) is closed for all i. Then, 7}~ !(F) = V(E;) for some
subset E; of A;. We claim that F = V(E). To see this, 7] is actually homeomorphism between
Spec(4;) and X;, thus

m (U F) = FOX,
and FNX, = {A; x -+ X Aj_1 Xxp X Ajp1 XX A, : By Cp € Spec(A;)} C V(E). Hence,
F=,FNX; CV(E). Conversely, if P = Ay x -+ X A;_1 Xxp x Aj41 X -+ x A, € V(E), then

p contains F;, thus P € X; N F. This implies F' = V(FE), done.

(b) (Second problem) If X = Spec(A) is disconnected, then there is two disjoint clopen sets whose

union is X = Spec(A). Thus X = V(I) U V(J) for some ideal I and J with V(I) NV (J) = 0.
By exercise 15 iii), V(I + J) = (. Hence I + J does not lie in any prime ideal, thus it cannot
be a proper ideal; otherwise it has a maximal ideal containing itself. Thus I + J = A. Also,
X =V({I)UV(J)=V(IJ). This implies I.J is contained in any prime ideal, hence I.J C . Also,
from the coprime condition of I and J, IJ =1nNJ (see [3][p.7].)

Now we want to see iii). Let a € I,b € J such that a +b = 1. (Notes that a,b are nonzero and
not 1.) Then, ab is nilpotent, thus 3n € N such that ™" = 0. Now think about (a + b)?". Then,
we can let

£ = a2n+(2n)a2n—1b+_ . _+( 2n )an+1bn—1’e2 _ ( 2n )an—lbn—&-l_’_. e (2 2n )ab2n—1+b2n.

1 n—1 n+1 n—1

Then, e; + e3 + (?)a”b” =e1 + ey =1 and ejes = 0 since every term in ejes contains a”b”.
Hence, e1(1 — e1) = 0 implies e1(e; — 1) = 0 thus e? = e;. Similarly, e3 = e5. Also we know that
e1 € I,es € J thus they are nontrivial idempotent.

Next, we assume iii) and prove ii). Suppose t be an idempotent. Then, s = 1—t is also idempotent
since s = t> —2t — 1 = 1 —t. Hence, let S, T be a subring of A generated by s and ¢, i.e., S = sA
and T = tA. Let ¢ : A — S X T by x — (sx,tx). It is surjective, since for any (sz,ty), take
h = sz + ty. Then, sh = s?z + sty = sx,th = ty, done. Also, it is injective, since (sz,tz) = 0
implies that tz = 0,(1 — t)x = 0. Hence, x = tz = 0. Thus it is bijective homomophism, so
isomorphism.

From ii) to i) is just done by First problem part.

In particular, the spectrum of a local ring is connected since Exercise 12 shows that it has no
nontrivial idempotent.

Xy is open by Exercise 17. So it suffices to show that X; = V(f)° is closed. It is equivalent
to say that V(f) is open. To see this, let f € A. Then s = 1 — f is also idempotent. We
claim that V(f) N V(s) = 0. If p € V(f) N V(s), then p contains f and s = 1 — f, thus p
contains an ideal generated by f and s, which implies f + s = 1 € p, contradiction. Also,
V(f)uV(s) =V (fs) =V (0) = Spec(A) by exercise 15. Hence, V(s) and V() are disjoint closed
sets whose union is Spec(A). Thus V(s) = V(f)°, V(f) = V(s)¢. This implies that V(f),V(s)
are clopen. This implies Xy and X, are clopen, too. Since f was arbitrarily chosen, every basic
open sets are clopen.
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24.

25.

26.

27.

(b) Notes that
XU Xp, = Vi = (_ﬂ v<fi>> = (VAN

i=1
where last equality comes from Exercise 15 iii). By exercise 11 iii), an ideal generated by {f;},
is principal, so (f) = ({fi}/,) for some f € A. Hence,

Xp U UXy, = (VH{fiHo) = V() =X

(c¢) Let Y C Spec(A) = X be clopen. Since Y is open, Y is union of basic open sets. Since Y is closed
and X is quasi-compact by Exercise 17 v), Y is quasi-compact. Hence Y is a finite union of basic
open sets by Exercise 17 vii). By above ii), done.

(d) Notes that Spec(A) is quasi-compact by Exercise 17 v). Now take z,y € Spec(A) which are
distinct. Then without loss of generality, assume p, Z p,. Then z € p; \ p,. Then, V(z) contains
Pz, V(%) contains p,. Since they are open, so Spec(A) is Hausdorff.

Notes that join and meets in the lattice are associative. Hence, addition and multiplication are well-
defined. Also, a® = a A a = a, done.

Conversely, let A be a given boolean ring. Then, a(a + b+ ab) = a + 2ab = a implies a < a + b + ab.
Similarly, b < a + b+ ab. Thus, a Ab < a + b+ ab. Moreover, if a < ¢ and b < ¢, then (a + b+ ab)c =
ac + bc + abc = a + b + ab implies that a + b+ ab < c¢. Hence, a Ab = a + b+ ab. Thus a A b exists.
Conversely, aba = ab and abb = ab implies ab > a,b. Also, for any ¢ > a, b, this implies ac = a,bc = b,
thus abe = ab, which implies ¢ > ab. This shows that ab = aVb. Now, ana’ = a+(1—a)+a(l—a) =1,
aVa =a(l—a)=0,done.

Let B be a Boolean lattice. Then using Execise 24, we can regard it as a Boolean ring, say A. Now
take a map A — Spec(A) by f +— V(f). Then, f < g implies f = fg implies V(f) D V(g) since f = fg
implies that all p € V(g) contains fg = f, which implies p € V(f). Hence Xy C X, which implies
Xy < X, if we regard topology as a lattice ordered by inclusion. Also, complement, sup and inf are
preserved, hence lattice of topology of Spec(A) is isomorphic to its Boolean lattice as a lattice. Since
the topology is open and closed subsets of compact Hausdorff topology by Exercise 23 iv), done.

This problem shows that if X is compact Hausdorff and C(X) is the ring of all real-valued continuous
function on X, then Maxz(C(x)) = {m, : € X} where m,, is a set of all functions in C'(X) vanishing at
. Tn the step iii), we claim that u(U;) = Us. Notes that u(Uy) = {m, : = € Us}. Thus if m, € u(Uy),
then f ¢ m, since f(x) # 0, thus m, € Uy. Conversely, if m € Uy, then by bijectivity of y, m = m,
for some x € X. Hence f(z) # 0. This implies m € u(Uy).

We need the weak Nullstellensatz, stating that

Claim V. V If k is algebraically closed field, and an ideal a of k[t1,- - ,t,] is not (1), then Z(a) # .

This is result of Exercise 5.17. Assume this and let m be the maximal ideal of k[t;,- - ,t,]. Then, Z(m)
is nonzero by the weak Nullstellensatz. Hence, 3z € Z(m). Thus m, contains m. By the maximality
of m, m = m,.

Now for P(X) = k[t1,- - ,t,]/I(X), we know that Spec(P(X)) has 1-1 order preserving correspondence
with ideals containing I(X). Hence if m is the maximal ideal in P(X), then it is just projection of
maximal ideal in k[t1,--- ,t,] containing I(X). By above result, we can assume this maximal ideal is
m,, for some z € k™. Since I(X) C m,, so x € X. Hence, any maximal ideal in P(X) is of the form
m, for x € X.

Also notes that m, = (& — x;)_,, since the RHS is subideal of m, and maximal from the fact that
P(X)/(& — )1 = k by a map sending &; — x;.
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28. Let ¢# : P(Y) — P(X) be a map induce by ¢. First of all, it is k-algebra homomorphism; to see this,

2

for any a € k, b,c € P(Y),

¢ (ab) = abo ¢ = a(b o ¢) = ag™ (b)
pF(b+c)=(b+c)op=(boo)+ (cogd)=¢¥(b)+¢7(c)
¢% (be) = (be) o ¢ = (bo p)(co @) = ¢ (b)¢7 (c)

where last equation comes from the fact that be(y) = b(y)c(y) for any y € Y.

Now let Hom(X,Y) be a set of all regular maps from X to ¥ and Homy(P(Y'), P(X)) be set of all
k-algebra homomorphisms from P(Y) to P(X). As we saw above, (-)# is well-defined. To see it is
injective, let ¢* = ¢*. If we let coordinates of ¢(z) and ¥(x) as ¢; : k™ — k and ¢; : k" — k
respectively for ¢ = 1,--- ;m, then for any coordinate functions & € P(Y),

pi=E&iod =T (&) =T (&) =Eio =y

for all ¢ € [m]. This implies ¢ = 1) as a polynomial mapping.

Moreover, (-)# is surjective. let A € Homy(P(Y), P(X)). Let 7 : k[t1,--- ,tm] — P(Y) be canonical
projection. Then Ao : k[ty, - ,tm] — P(X). Hence Let ¢; := Aow(t;) € P(X) for all i € [m]. Then

¢; + X — k is regular function since it has preimage in k[t1,--- ,t,] from the fact that P(X) is the
quotient ring of k[t1,--- ,t,].
Then, we know that for any ¢; € k[t1,- - ,t;], Aomw(¢;) = ¢;. Thus for any n(t1, - ,tm) € k[t1, -+, tm],

Aom(n) =nAom(t), - s Aom(tm)) =n(¢1, -, dm) =10 ¢.

since each 7 and A are multiplicative homomorphism ( in different sense; A as k-algebra and 7 as ring
homomorphism.) Now it suffices to show that for any ' € n+ I(X), no ¢ = n o ¢. If we show this,
then ¢# is well-defined on 7(n), and A and ¢ coincides on every 7(n) € P(Y), so A = ¢. And the
statement for any ' € n+ I(Y), no ¢ = 1 o ¢ is equivalent to say that ¥ o ¢ = 0 for any ¢ € I(Y).
To see this, notes that

Yoo =1v(gr, -, 0m) =PpAom(tr), -, Aom(tm)) = Aom(¥) = A(0) =0
since ¢ € I(Y').
Thus () is surjective. Actually, for ¢: X — Y and ¢ : Y — Z, and for any n € P(Z),
(Wog) () =noyog=e"(noy)=¢" (¥ (n) =" o™ ().

Hence, this shows that the coordinate ring is contravariant functor from the category of affine algebraic
varieties and regular maps to the category of finitely generated k-algebras and k-algebra homomor-
phism.

Modules

Exercise 2.2. 1. Ann(M + N) = Ann(M) N Ann(N).

2. (N :P)=Anmn((N + P)/N).

Proof. If x € Ann(M) N Ann(N), then z(M + N) = 0, since M + N is just finite sum on M U N. So
x € Ann(M + N). Conversely, x € Ann(M + N) implies that zm = 0 and zn = 0 for all m € M,n € N
since M, N C M + N.

For the second one, let € (N : P). For an arbitrary element z € (NN + P)/N, z has representation

=3 m—&-ZZ:l pi+N for some n; € N,p; € N, hencexz =Y -, ami—&-ZL:l zp;+xN = 0+N = 0.Thus
x € Ann((N + P)/N). Conversely, if € Ann((N + P)/N), then zp € N for any p € P, otherwise p + N is
not annihilted by z, contradiction. Thus z € (N : P). O
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Notes that every ideal is subring, but ideal as a subring may not be commutative ring with unity. For
example, think an ideal of direct product generated by elements (0,---,0,a,0,---,0). This ideal is definitely
a subring of A, but it may not have unity.

Corollary 2.7. Let M be a finitely generated A-module, N a submodule of M, a C R is an ideal contained
in the Jacobson radical. Then, M = aM + N — M = N.

Proof. Notes that a(M/N) = (aM + N) /N as a submodule of M/N. To see this, let m + N € a(M/N).
Then, m = am’ for some a € a and m’ € M, thus m + N = am’ + 0+ N for 0 € N, hence m + N €
(aM 4+ N) /N. Conversely, let am +n + N be an element in (aM + N) /N. Then, am +n+ N =am + N,
thus am +n+ N € a(M/N).

Thus the given condition says that a(M/N) = (aM + N) /N = M/N. Hence by Corollay 2.6, M/N = 0.
This implies M = N. [

Proposition 2.9. 1. Let
M5 M5 M -0
be a sequence of A-modules and homomorphisms. Then, the sequence is exact if and only if for all
A-module N, the sequence

0 — Hom(M", N) % Hom(M, N) % Hom(M', N)
is exact.

2. Let
0—+N 5 NS N
be a sequence of A-modules and homomorphisms. Then, the sequence is exact if and only if for all
A-module M, the sequence

0 — Hom(M, N') % Hom(M, N) 2 Hom(M, N")
s exact.

Proof. Suppose that
M5 M5 M -0
is exact. Then, u is injective and v is surjective. Thus v is injective since if f,g € Hom(M", N) such that
fov=gouw, then for any x € M”, 32’ € M such that v(z') = x, hence f(x) = fov(z') = gov(z') = g(z).
Also, from exactness of sequence of modules, Im(7) C ker(a) since for any f € Hom(M"”,N), fovou =
fo0=0. Now let f € ker(u). Then, ker f DO Imu = kerv. Hence, by argument in [3|[p.19], f give rise to
f: M/ker(v) — N. Since M/ker(v) =2 M", there exists g : M" — N whose behavior is equal to f. Now
notes that f(x) = f(z + ker(v)) = g o v(x), hence f is in ker(7), done.
Conversely, let

0 — Hom(M",N) % Hom(M, N) % Hom(M’, N)

be exact for any N. Then, to see v is surjective, suppose that v is not surjective. This implies Im(v) is proper
submodule of M"”. Then, take N = M"”/Im(v). Since N is nonzero module, 7 : M — M" /Im(v), which is
canonical surjection, is nonzero. Hence, 7(7) # 0. However, m o v = 0 since Im(v) C ker(7), contradiction.
So v is surjective. Moreover, woT = 0 implies fovou = 0 for any f € Hom(M", N). Take N = M" and f be
an identity map. Then, fovowu = 0 implies v ou = 0, since f is isomorphism. This implies Im(u) C ker(v).
To see equality, let N = M/Im(u) an let ¢ : M — N be the projection. Then ¢ € ker(w), thus 3¢ : M — N
such that ¥ = ¢ o v Thus Im(u) = ker(¢) and ker(¢) contains ker(v). This implies Im(u) = ker(v).
For the second one, suppose
0N %NS N

be exact. Then, Im(u) = ker(v) and w is injective. To see W is injective, let f € Hom(M, N') such that
%(f) = 0. Then wo f = 0. This implies f = 0 since v is injective. Also, Im(u) C ker(v) from vowu = 0. If
f € ker(v), then vo f =0. Thus Im(f) C ker(v) = Im(u). Hence, define

f:uilof.
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It is well-defined since Im(f) C Im(u) and wu is injective. Also, f € Hom(M, N') and u(f) =uou"to f = f.
Hence f € Im(u), done.
Conversely, suppose
0 — Hom(M, N') % Hom(M, N) % Hom(M, N")

be exact for any M. Then, @ is injective and Im(%) = ker(v). To see u is injective, let M = Z and z € ker(u).
Then we have amap f : Z — N’ by 1 = z. Then vo f = 0 implies f € ker(u) thus f = 0. Thus = = 0.
Hence ker(u) = 0, so u is injective. Moreover, Im(u) C ker(v) since 7o @ = 0 implies v ou o f = 0 for any
f: M — N’, therefore by taking M = N’ and f be identitiy, we get vowuo f = 0 implies v ou = 0. Also, to
see Im(u) 2 ker(v), let « € ker(v). Then let M = Z and take a map f:Z — N by 1 — z. Then,

Im(3(f)) = Im(v o f) = 0

implies that f € ker(v) = Im(u). Hence there exists g € Hom(Z, N') such that uwo g = f. Thus, u(g(1)) =
f(1) = x. This implies z € Im(u), done. O

Proposition 2.14. Let M, N, P be A-module. Then there exists unique isomorphisms
I. MIN->NRRQM

2. (MRAN)QP -+ MRINQP) > MRONR P
3. (MBN)QP = (MQP)B(NQP)
4. AQM — M

such that, respectively,
L.zRy—y®ax
2. (zRY)QRz—zR(YR2)—HITRYR 2
3 (r,y) @z~ (2Q2,y® 2)
4. a®x— ax.
Proof. Second one was prove in the book [3]. For the first one, M x N — N x M — N @ M gives

a bilinear map sending (z,y) to y ® x, so by the universal property of tensor product it induces a map
M@N — NQ@ M sending ®y to y®z. Similarly, N x M — M x N — M @ N is a bilinear map sending

(y,x) to x ® y, so by the universal property, we hvae a map y ® « to x ® y. Those two maps are inverse of
each other, done.
For the third one, M@ N x P > M x P& N X P - M@ P & N P is a bilinear map, so we have

a linear map ¢ : MP NP - MQP O NP by (m,n) @ p — (m®@p,n&p). On the other hand,
MxP—-(M@&N)QPand NxP — (Ma&N)QP by (m,p) — (m,0)®p and (n,p) — (0,n) ® p are
bilinear map, so we have two linear maps M QP — (M @ N)Q P and NQP — (M @& N)Q P. Thus its

direct product has a map

b MARPONRP—+MEP NP by (mepnep)=(m0)ep+(0n)ap.

Notes that its restriction on each side is linear, hence this map itself is bilinear. Now notes that
govp(mxp,n@p’) = ¢((m, 0)@p+(0,n)@p’) = ¢((m, 0)®p)+¢((0,n)@p") = (Mm@p, 08p)+(0&p’, n@p) = (M&p, n&p’)
and

1/)O¢((m7”)®l’) :¢(m®P,n®P) = (m,0)®p+(07n)®p: (m,n)@p.
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Hence they are inverse of each other, thus isomorphism.
For the last one, notes that A x M — M by (a,m) — am is bilinear. Hence it induces a bilinear map
AQM — M by a ® m — am. Hence this map induces a linear map ¢ : AQ M — M. by a ® m — am.

Now think about the map ¢ : M — AQ M by m — 1®m. Then, ¢ o ¢y(m) = ¢(1 ® m) = m and
Yopla®m)=1v(am) =1® am = a ®m, done. O

Exercise 2.15. Let A, B be rings, let M be an A-module, P a B-module, N an (A, B)-bimodule (that is,

N is simultaneously an A-module and a B-module and the two structures are compatible in the sense that

a(xb) = (ax)b for alla € A,b € B,x € N). Then M @ N is naturally a B-module, N @ P an A-module,
A B

(M) R P=MRNKP).
A B A B

Proof. Notes that for given p € P, M x N = M @(N Q) P) by (m,n) — m & (n ® p) is bilinear. Hence, it
A B

and we have

induces a linear map M @ N — M Q(N Q P) by m®@n — m ® (n ® p) for given p. Also, we can construct
A A B

a amp

(M®N) ><P—>M®(N®P) by (m ®mn,p) » m® (nQ p).
A A B

This is B-linear with respect to fixed (m ®n) (check.) And also A-linearity on fixed p is just showed. Hence
we can get a (A, B)-linear map

MQRN) QP —MENQ)P) by (m@n)@p—me (n@p).
A B A B

We can do the symmetric argument by interchanging M, N, and P to get an isomorphism as (A, B)-bimodule.
O

Exercise 2.20. If f : A — B is a ing homomorphism and M is a flat A-module, then Mp = BQ M is a
flat B-module. N

Proof. Let j : N = N’ be any injective B-module homomorphism. It suffices to show that 1®j : Mp @ N —
Mp %N’ is also injective. Since f : A — B exists, we can think N, N’ are A-modules. Then, 7

J@ 1l NQRQM — N Q)M
A A
is injective as A-module map since M is a flat A-module. Then,

N@MB:/N@(B@M) = (N@B)@M = N M.

Def by 2.15 as bimodule A by 2.14 as bimodule A

Notes that last isomorphism as bimodule comes from the fact that for given f : A — B a ring homomorphism
and W 2 @ as a B-module, then they are isomorphism as an A-module since the given isomorphism map is
also can be regarded as A-module homomorphism satisfying surjectivity and injectivity.
Thusm the map j®1: NQ Mp — N’ Q) Mp is injective if and only if ¢ : N Q@ M — N’ @ M is injective
B B A A

as a B-module. We already know that as an A-module homomorphism ¢ is injective by the fact that M is
flat. Since injectivity do not depends on its module structure, this map is also injective as a B-module, since
this map already has a bimodule homomorphism as we’ve shown in the equation. O]

Claim VI. p.30 Let f : A — B,g : A — C be two ring homomorphisms. Let h : B — C be a ring
homomorphism. Then, h is A-algebra map if and only if ho f = g.
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Proof. Suppose ho f = g. Let x,y € B. Then h is additive since it is ring homomorphism. For any
acAbeB,

a.h(b) = g(a)h(b) = h(f(a))h(b) = h(f(a)b) = h(a.b)

Thus h is A-module map. Conversely, suppose h is A-algebra homomorphism. Then, for any a € A,
h(f(a)) = h(a.1) = a.h(1) = g(a)h(1) = g(a).
Thus ho f =g. O
Claim VII. p.31 In the last paragraph, the diagram commutes when we set uw(b) =b® 1 and v(c) =1 ®c.
Proof. uwo f(a) = fla)®1=a.(1®1) =1 g(a) =vog(a). O
1. By Bezout’s theorem, there exists a,b € Z such that am+bn = 1. Thus for z®y € (Z/mZ) Q(Z/nZ),
Z
TRY=(am+bn)(TRY)=amzQy+2x@bmy=00y+2xx0=0.
2. Notes that 0 - a - A — A/a — 0 is exact as a sequence of A-modules. By tensoring with M, we can

get

0—>a®M—>A®M—>A/a®M—>O.

By Proposition 2.18, a @ M EN AQM SN AJa@ M — 0 is exact. Thus, i is surjective, hence

Afa@Q M = AR M/ker(i) = AK) M/TIm(j) = M/Im(j).

Notes that Im(j) = aM, done.
3. Let My = k@ M = M/mM by Exercise 2. Then My = 0 implies M = kM, and by Nakayama lemma
A

this implies M = 0. However,
MEN=0 = (MEN),=0
A A

= kM EQN) =0
A A

— QNN -0
A A A

= k ® My, ® N by Proposition 2.14 i) and definition of M}
A A

= My ® k®N by Proposition 2.14 i)

A A

- Mk®Nk:O.
A

Notes that My Q = N = M Q) = Ni as A-module since for any two representative a and b of the
A k
same equivalence class in k = A/m, a = m+>b for some m € m, thus from M, Q N, =k QM QL Q N,
A A A A
if we take k1 @ m ® ko @ n € My, @ N,
A

alki @m@kya@n) =ak1 @M @ky @n =bk; @M D ko @n = b(k; @M @ ko @n).
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Thus, acting by a € A is equivalent to acting by a € k which is an equivalence class containing a.
Thus, M, @ Ni = My, @ Nj. as an A-module. Thus given condition implies that
A k

Mk(g)Nk:O
k

However, M}, = M/mM and N = N/mN are naturally k-module, i.e., k-vector space by [3][p.22].
Thus, they are vector space. And My @ Nj is still k-module, thus it is also a vector space. Its
k

dimension is dim My x dim Ny as a vector space (See Do Carmo to prove this fact by constructing
basis. Proving that tensors of bases form a basis needs a fact of dual basis.) Hence either M = 0 or
Ni = 0. Then by Nakayama’s lemma, either M =0or N =0 .

. We need a claim for direct sum.

Claim VIIIL. Let M = @,.; M;, N = @,c; N; be two direct sums with the same index. Let f; : M; —
N; be a module map. Then, there exists f : M — N a module map such that

fi ifi=y

0 o.w.

TN, O f ol = {

Moreover f is injective (or surjective) if and only if all f;’s are injective (or surjective, resp.)

Proof. From the universal property of direct sum, from ¢y; o f; : M; — N, we can have a map
f:M — N such that foupr; =ty ;0 fi. Hence, By applying my ; for each side, we get mn jo foip,s =
TN, 0Lng o fi = fi. If we apply mxn ; with j # 4, then 7y j o ty; = 0 implies the second case.

Moreover, f is injective if and only if all f; is injective from the equation f opr; = ey 0 fi- (Notes
that composition is injective if and only if its rightmost part is injective. Also, from

fowmi=fi = fowmionmi=fiomms = f=fiomm,
f is surjective if and only if f; is surjective, since composition is surjective if and only if its leftmost
part is surjective. O
Let j : N — N’ be injective A-module map. Let j®1: NQ M — N’ Q M. Notes that N Q M =
D,cr N @ M; by Proposition 2.14 iii), we can take a map j; :AN® M; —>f]l\7’ ® M; by j; = WN/% M,i ©
j®1o LN®MZ Notes also that 7TN/®M] oj®1o LN®M1 =0 smce its M part goes Zero. Thus this

constructlon satisfies above claim. Hence M is flat if and only if 7 x 1 is injective if and only if all j;s
are injective by above claim if and only if M; is flat since j was arbitrarily chosen.

For later use, we claim that

Claim IX. Free A-module is flat A-module.

Proof. Free module is direct sum of A as an A-module. And A ®( ) is an exact functor since A ® M=

M for any M. Thus, A is flat. Therefore any direct sum of copies of A should be flat by Exermse
24 O

. As an A-module, Afz] = @,y M; where M; = (). To sce this, let ¢ : Alz] — @,y M; by sending
" to x* € M;. By construction of each elements, it is definitely additive homomorphism. Also, for any
f=ao+aix+- +apx* € Alz], ¢(af) = (aag, - ,aa,,0,--) =a(ag, -+ ,an,0,---) = ag(f). Hence
¢ is module map, and it is clear that ¢ is bijective. Hence isomorphism.

Now notes that each M; is free A-module, i.e., (z%) = A as an A-module. Thus by Claim it is flat.
Thus, by Exercise 4, A[z] is flat A-module.
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6.

8.

Define an action of A[z] on M[z] as for any (> ., a;z") € Alz] and (>t m;xt) € Mz],

n m m+n

(Z a;z®)( Z Z cpa®

=0 j=0

where ¢, = Zf:o a;my—j, and if we regard a;, my as zero for [ ¢ [n],l’ € [m]. Notes that multiplication
am from a € A and m € M denotes action of A on M. To check that it gives a module structure, we
need to show that distributivity and associativity holds. For associativity,

Zazx —|—Za Z

max(n,n')er

k
Z Z(aj +al)my—; | 2*

\_/.
I

=0 k=0 §j=0
max(n,n')er k max(n7n')+m k
k
= E g a;mg—; | ° + E a M j
k=0 j=0 k=0 §=0

n+m n’'+m k

= g g ajmy—j | =¥ + E g almy_; |
k=0 7=0 j=0
n m

= Q_a)(}_mi Za (S ).
=0 7=0 7=0

And the other way is similar. For distributivity, it is usual product on polynomial ring, and just mul-
tiplication of coefficient changed to module action, so it holds. Also 1 € A[z] works as identity. Hence
M{z] is a A[z]-module. Now notes that M([z] = @,y M, where M/ = z'M. (Showing isomorphism is
exactly the same as we did in the proof of Exercise 5.) Hence, if we use notation Alx] = P, M; in
the proof of Exercise 5,

2] QM = EBM@M @IZA®M Pa'M =M

1€N ieN 1€EN
as an A-module. Notes that 2°A Q) M = 2 M comes from the fact that each 2°A = A as an A-module,
A
thus 2 AQ M 2 AQ M = M = 2'M as an A-module.
A A
Let ¢ : Alz] — (A/p)[z] by a;z’ — a@;x® for any i € N. It is homomorphism by construction. Also, it is
surjective, since A — A/p is surjective. Thus, ker(¢) D p[z]. Conversely, if f = >"""  a;x" is in ker(¢),

then each a; is in p, thus f € p[z]. Since A/p is an integral domain, its polynomial ring is integral
domain, thus ker(¢) = p[z] is prime ideal in A[x].

Claim X. VI Polynomial ring over integral domain is integral domain.

Proof. Let A be an integral domain. Then, by Exercise 1.2 iii), f € Alx] is zero divisor if and only
if there exists a € A such that af = 0. If f is nonzero zero divisor, then take a zero divisor f of the
smallest degree. Then deg(f) >= 0. (We use convention that deg(0) = —oo in Lang’s book.) Then, by

mentioned exercise, Ja € A such that af = 0. However, since A is integral domain, af doesn’t change
degree of f since a is nonzero. Thus, —oo = deg(0) = deg(af) = deg(f) > 0, contradiction. O

However, m[z] is not a maximal ideal in general. Think about Z[z]. Let m = (2). Then, m[z] is a set
of polynomials whose coefficients are even. So, m[z] = 2Z[x]. However, notes that (2, x) from Exercise
1.16 properly contains 2Z[x], since & ¢ 2Z[x]. So it is not a maximal.

(a) Suppose M, N are flat. Fix a short exact sequence 0 - B’ — B — B” — 0. Then0 —» B’ Q@ M —
A
BQM — B”"Q M — 0 is exact by flatness of M with Proposition 2.15. By flatness of N with
A A
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9.

10.

11.

Proposition 2.15, 0 = (B M)QN - (BRM)QN — (B"QRQM)R N — 0 is exact. By
A A A A A A
proposition 2.14 ii), 0 = B’ Q(M K N) - BRQ(M Q N) — B”" Q(M @ N) — 0 is exact. Since
A A A A A A
0 — B’ - B — B” — 0 was chosen arbitrarily, by Proposition 2.15, M @ N is flat.
A

(b) Let 5 : M — M’ be injective A-module map. Let f : A — B be a ring map making B as an
A-algebra. First of all, since B is flat A-algebra, which implies flat as an A-module,

jx1:MQB— M QB
A A

is injective map.

Also, since N is flat as B-algebra, and j x 1 can be regarded as a B-module injective map. To see

this, since B itself is (A4, B)-bimodule, M Q) B and M’ @ B are naturally a B-module by Exercise
A

A
2.15, and the map j x 1 is B-module homomorphism, since it is additive homomorphism inherited
from A-module homomorphism and for any b€ Bym @b € N Q) B,
A

bj@1(meb)=0b.(j(m)@b) =j(m)@bh' =j@1(meb)=7®1(b.(mo?b)).
Thus, since N is a flat B-module, by Proposition 2.15,
Jix1:(MEB) QN = (M K)B) (KN
A B A B
is injective. Using Exercise 2.15, we have a map

MEN=ME)BRN)=MER)B) RN — (M QB QRN=MQBRN) =M N.
A A B A B A B

A B A

Since this map is coposition of isomorphisms and injective maps, thus it is injective. Hence N is
a flat A-module.

Notes that M"” = M/ker(M — M"), and ker(M — M") = M’ as an A-module. Hence we can
regard this short exact sequence as 0 — M’ = M = M/M’ — 0. Now let {z;}icr, {7 }jcs are finite
generating set of M’ and M/M’. Then, we can regard y; as lifting of ;. Thus a submodule N of M
generated by {z;,y;}ier jes is finitely generated module. Also, N contains M’ and 7(N) = M/M’.
Thus, by a one-to-one order preserving correspondence between submodules of M containing M’ and
submodules of M/M’, this implies that N is the largest submodule of M, which is M itself. Hence M
is finitely generated.

Think about the map M — M/aM — N/aN by m — m + aM +— u(m) 4+ aN. Then, from the
surjectivity, u(M) 4+ aN = N. Then by Corollary 2.7, w(M) = N. This implies u is surjective.

For the first question, let m be a maximal ideal of A, and let ¢ : A™ — A™ be an isomorphism as
A-module. Then, 1® ¢ : (A/m)QA™ — (A/m) Q) A™ is also an isomorphism as A-module. (To see
A A

this, we can use Proposition 2.18 with an exact sequence 0 — A™ 2y An 0.) Then, by Proposition
2.14, if we let k = A/m, a residue field, then (A/m)@ A™ = (A/m)™ = @, k = k™ and by the
same argument (A/m) & A™ = k™. Also, if a,b € A s{fch that a = b+ m for some m € m , then for
any T € A/m, (ay,--- 7ax:‘n) €A™,
a.(T®(ay, - ,a,)) = ((b+m).(@ (a1, ,an)) = br@ (a1, ,an)) + (MT, (a1, ,am))
=0z ®(a, - ,am)) =b.(T® (a1, ,am)).
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12.

Thus we can regard (A/m) @ A™ = k™ as a k-module. Hence it has a vector space structure. Also,
A

the map 1 ® j is also k-module map, since for any a,b € A such that a = b+ m for some m € m,
a.1®j(@® (a1, am)) = j(a.(Z@(ar, - ;am))) = j(0-(TR (a1, -+ ,am))) = b1RJ(ETR (a1, am)).
Hence, 1 ® j is k-module map, which implies that it is just a vector space map. And we already know
that k™ = k™ as a vector space if and only if n = m, using argument on the basis. Done.

For the second question, if ¢ : A™ — A™ is surjective, so does 1®j. (We can use Proposition 2.18 with

an exact sequence ker ¢ — A™ ENTUIN 0.) And by the above argument, since 1 ® j is a vector space
homomorphism, this implies 1 ® j(A™) = A™ Since dim(1 ® j(A™)) < m, this implies that n < m.
For the third question, we can use Proposition 2.4. We cannot use the same argument since tensor is
right exact.

Suppose ¢ : A™ — A™ is injective but m > n. Then, we can regard A" as a submodule of A™,
by stating that A™ = {(a1,---,an,0,-,0) € A™ : a; € A}. Then, clearly, if we let a = A, then
P(A™) C A" C A™ = aA™. Also, notes that A™ is finitely generated A-module. Then, Proposition
2.4 states that there exists an equation of the form

f(@) =" +a¢" '+ +a, =0

where the a; are in a = A. If this polynomial has minimal possible degree, then a,, # 0; if a,, = 0, then
f(@) = ¢(g()) for some polynomial g of ¢, hence g(¢) = 0 since injectivity of ¢ implies that ¢ is nonzero
for all values a € A\ {0}. Now notes that ¢(v) € A™ for any v € A™, thus ¢(v) = (v1, -+ , Vs, 0,---,0)
for all v € A™. However,
f((b)(oa T 707 1) = (¢n + a1¢n_1 + - ~an,1¢)(0, e 703 1) + a/n(07 e 707 1)
= (ala"' aanao,"' 30)+(Oa 707(111) = (O, 30)

This implies a,, = 0, contradiction.
‘We need another claim for direct sum of module.

Claim XI. VII If M, N are A-modules such that there exists a module mapr : M — N ands: N — M
such that r o s = 1y, then M = N @ coker(s) = N @ ker(r).

Proof. Let ¢ : M — N @ coker(s) by m — (r(m),m) (since coker(s) = M/Im(s).) If m € ker(¢), then
r(m) =0,m € Im(s). Hence In € N such that s(n) =m and 0 = r(m) = r o s(n) = n. Hence m = 0.
This implies injectivity. To see surjectivity, let y € N, € coker(s). Then, let z = m + s(y — r(m)),
then

¢(2) = (r(m+s(y—r(m))),m + s(y — r(m))) = (r(m)+ros(y—r(m)),m) = (r(m)+y—r(m),m) = (y,m).

Hence, it is surjective map. So isomophism.

Also, take a map 1) : coker(s) — ker(r) by m — m — s or(m). First of all, it is well-defined, since for
any two representative m, m’ € m, m = m’ 4+ s(n) for some n € N, hence

(m) = m—sor(m) = m'+s(n)—sor(m’+s(n)) = m'+s(n)—sor(m’)—s(n) = m’'—sor(m’) = (m’).

Also, r(m — sor(m)) = r(m) —rosor(m) = r(m)—r(m) = 0. Hence this map is well-defined.
Moreover, it is injective since for ¥(m) = 0, m = s o r(m). However, m # 0 if and only if m ¢ Im(s).
Thus the only possible m satisfying m = s o r(m) is when m = 0. Also, it is surjective, since for any
m € ker(r), m — s or(m) = m. Hence ¢(T) = m, done. O

Let e, -, e, be a basis of A”. Then from surjectivity Ju; € M such that ¢(u;) = e;. Then, let N
be a submodule of M generated by ui,- -+ ,u,. Also define ¢ : A — N C M by e; — u;. Then,
¢o1h = 14n. By above claim, M = N @ ker(¢) with N = A™. To show that ker(¢) is finitely generated,
notes that M/N = ker(¢). Then, let {z;}, be a generating set of M. Then, {x; + N}, generates
M/N since every element in M/N have a representation which is linear combinationf of z;s. Thus
ker(¢) is finitely generated.
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13.

14.

15.

16.

Define p : Ng — N by p(b®y) = by. Then, pog(y) = p(1®y) =y. Thus pog = 1. This implies g is
injective since composition is injective if and only if the rightmost term is injective. Also, if we define
p' N —g(N)by (b®y) =1®by, and g’ : g(N) — Np by 1®n — 1®@n, then p'og" = 1,y). Hence
by the above claim,

Np = g(N) & ker(p)

Hence g(INV) is direct summands of Np. And in this case, b® y corresponds to (1 ® by, b®y — 1 ® by).

To see p1; = pj o psj for i < j, let x; € M;. Then, x; — p;;(x;) € D = ker(p). Hence,

piwi) = pl@s) = (s +ker(u)) = plpa;(2:) + ker(p)) = p(pij (i) = pg (pag ()
Notes that first and last equality comes from the restriction.

Let x € M. Then, = has a representative in C = €, .; M;. Since it is direct sum z is tuple of finitely
many nonzero elements, say x = >, ; ;, for |J| < oo. Thus by applying directed set property [J| —1
times, we can get ¢ € I such that i > j for all j € J. Now let & = ZjeJﬂji(%‘)- Then,

= | D owy | =Y wlay) =D ) =D miopilay) = pi | Y pilay)
jeJ jeJ jeJ jeJ jeJ
Thus if we let z; = Zjejﬂji(xj)a then x; € M;, and p;(z;) =« € M.

For the second statement, suppose p;(x;) = 0 for some i € I. Then, x; € M; N D. Hence, z; is finite
sum of generators of D in M;, i.e.,

zi= > (v —mir(y;)).

§keTCJ?

for some finite subset J of I, and y; € M; for each j € J. Now by the same argument in the above
proof, there exists [ € I such that [ > k for all k € JU {i}. Also, we can apply p;; on each y; in the
summands as j; since y; = 0 if j # 4, and also apply it on ;i (y;) as pr since pjr(y;) = 0 if k # 4.
Hence,

par) = Y ma(y— k) = > (in(ys) = pw o pik(y;) = 0

jkeTCJ? jkeTCJ?

where the last equality comes from uj = i

We use notation of Exercise 2.14. From the universal property of direct product, 3& : C' = @, ; M; —

N such that for each z; € M;, & ot; = a;. Now check that for any generator x; — p;;(x;) € D,

a(x; — pij(z:)) = (i) — a0 pag (i) = aj o pij(: — i) =0
where the last equaltiy comes from the given condition «a; o p;; = ;. Hence we can lift this map on
C/D = thZ Denote « : h%li — N be the lifting map. Then, for any z; € M;,

aopi(z;) = a(x;) = a;(x;).

To see the homomorphism is unique, let @’ : M — N be another homomorphism satisfying a; = o’ o ;.
Then, by Exercise 15, let p;(x;) be an arbitrary elements of M;. Then, o' (u;(z;) = a; = a o pi(z;).
Hence o/ = a.

Notes that this exercise is about universal property of direct limit. Now for later use, we claim that
direct limit itself is unique, i.e., a module M in Exercise 16 is unique.

Claim XII. VIII Direct limit is unique, in the sense that if there exists (M’, pl - M; — M') such that
for given N and oy : M; — N, there exists o/ : M’ — N such that o o u; = o, then M’ = M and
i = i
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18.

19.

Proof. What we’ve shown can be denoted as below diagram.

If we have (M', i} : M; — M') be another direct limit, i.e., satisfying properties of M in Exercise 16,
then by letting N := M’ and «; := u}, we have a unique map S : @Mi — M’ such that o p; = p).
Conversely, since M’ acting like M, if we let N = M = lim M; and o; = p; in viewpoint of N, the by
the Exercise 16, there exists v: M’ — 11_11>1M1 such that o u; = ;. Hence,

Boyou;=pi,voPBou=p

for all + € I. For the right one, since every elements in lim M; can be denoted as p;(x;) for some i € I,
this implies yo 8 = 1“3 M, For the left one, notes that? we let M = M’ and N = M’, o; = pl}, then
the above universal property gives us unique map & : M’ — M’ satisfying & o u; = p, and since 1,/
also has property that 1p; o u = pl, thus &€ = 1p. Now the left one implies that § o v also the map
satisfying B8 o~y o u; = ul, hence oy = 1py. (Notes that this argument is more categorical than the
previous one using Exercise 15.) Hence, 8 and ~ are inverse to each other, thus M’ = hgrl M;, done. [

First of all, > M; D |J M; since each M; C > M;. On the other hand, if z € > M;, z = Zje] x; for
some finite index set J of directed set I. Hence there exists k € I such that j < k for all j € J. Thus
x € My, which implies « € |J M;.Thus Y M,; = |J M, and | M; has a module structure.

Now to see lim M; = |J M; as a module, if we regard M; as canonical subset of lim M;, then @MZ )
U M;. To see equality, we use the uniqueness of direct limit. Let N be an A-module having maps
in Exercise 16. Then, construct a : |JM; — N by z; — «;(z;). Then, if we let p; : M; — |JM;
as canonical injection, then a o y; = «;. Since N was arbitrary, |JM; is also direct limit, thus by
uniqueness, it is isomorphic to hngZ Since we already identify |J M; as subset of li_I)IlMi, we can say
that they are equivalent.

To see the last statement, for any * € M, x € Az C M, thus M is union of finitely generated
submodules. Also, this index of finitely generated submodules is directed, since for any two finitely
generated submodule, their sum is also a finitely generated submodule. Hence with canonical inclusion
maps, it comprise a directed system, and by the statement of this Exercise, M = h_n}Ml

From v; o ¢; : M; — N, from the universal property of direct limit (in Exercise 16) we have a map
¢ : M — N such that v; 0 ¢; = ¢p o p;.

Let ¢ : M — N and ¥ : N — P be a module map induced by homomorphism of directed system.
Let M = (MZ,/LU),N = (Ni,l/ij),P = (R,gm) AISO, JI7 A Ml — M, v; N1 — N,€1 : Pl — P. Then,
1; 0 ¢; = 0 by exactness of M — N — P. Thus,

0=¢&o;0¢; =1vodopu,.

Since ¥ o ¢ are induced by the universal property, so it is unique, and 0 also satisfy the condition of
universal property, this implies 1) o ¢ = 0. Hence Im(¢) C ker(¢).

To see they are equal, let n € ker(¢). Then, by Exercise 15, n = v;(n;) for some ¢ and n; € N;. Then,
since

0=1(n) =1 ovi(n) =& oi(n)
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21.

and &; is injective, n; € ker(v;) = Im(¢;). Hence n; = ¢;(m;) for some m;, therefore,
This implies n € Im(¢), done.
Let g; : M; x N — M; @ N be the canonical bilinear mapping defined when we construct the tensor
A
product M; x N. Then, let P = lim(M; Q) N), and R = lim M; x N. Notes that R = lim M; x N;
liny (M @ N) ling ling

to see this, let a; : M; x N — @ for some A-module @ such that for all i < j, oy = a5 o (s X 1n).
Now define « : lim M; x N — @ by (pi(x;),n) — a;(x;,n). Then, this satisfies @ o (u; X 15)(z;,n) =
a(pi(zi),n) = a;(z;,n). Thus, by the uniqueness of direct limit, R = lim M; x N =M x N.

Now to see that P =2 M x N, notes that g; induces a homomorphism of direct system. To check this,
we already show that (M x N, u;; x 1) is also a direct system. Hence,

pij @ 1n o gi(mi,n) = pi @ In(m; @ n) = pij(m;) ®n

and
g5 © pig X In(mi,n) = g;(pij(mi),n) = pij(m;) @ n.

Therefore, by Exercise 18, it induces a homomorphism g : M x N — P. Now notes that g is A-bilinear.
To see this, by Exercise 15, every element in M X N can be denoted as p;(m;) X n, thus if we fix n € N,
then

9((aspi(ms), n) + (ajpi(m;),n)) = g((pi(aimi), n) + p;(aym;),n)) = g((pi(aimi), n)) + g(p;(a;m;),n))
=gop; X In(a;m;,n) + gop; x 1y(ajm;,n)
= pi ® 1y 0 gi(aims,n) + p; ® 1n o gj(a;m;,n)
= a;pi(mi) @ n+ ajp;(m;) @ n
= aig(pi(mi), n) + a;g(p;(m;), n).

Also, if we fix M part, then linearity also holds since a®@n+b®mn = (a+b) @ n. Thus, by the universal
property of tensor product, we have a map ¢ : M ® N — P. We already have ¢ : P — M ® N using
Exercise 16. To see they are inverse, fix an arbitrary elements of P as p; ® 1x(m;,n) by Exercise 15.
Then,

¢oY(ui ® In(ms,n)) = ¢ o vi(m; @ n) = ¢(pi(mi) @ n) = g(pi(mi),n) = pi(m) @n = p; @ 1y (mg, n).
and for arbitrary element u;(m;) ® n in M x N by Exercise 15,

Yo d(pi(m;) @ n) = o g(pi(mi),n) = (pi(mi) ® n) = i(m; ®n) = pi(m;) @n.
Hence they are inverse to each other.

First of all, we will show that A is a ring. Let a,b € A. By exercise 2.15, a = o;(z;), b = a;(z;) for
some 4,7 € I. Since I is direct set, 3k € I such that i < k,j < k. Hence, from x; — a;;(z;), we can get

(i) = a(z;) = a(air(zi) = ar(ax(z:))
since a(x; — a;i(z;) = 0 is projection. Likewise, o;(X;) = ag(ojx(z;). Hence, define
a-b = ap(apk(z) - aj(z;)).

Since ;i (2;), () € Ag, this definition is possible. Also, to see it is well-defined, choose another
k' which is distinct to k. Then from the definition of directed set, 31 € I such that &',k <, hence

ag ik (i) - aji(r5)) = aulom(qir (i) - aji(x5))) = ar(ag (i () - ajr(z;))) = o) - aj(x;))
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22.

and
ag (g (1) e (27)) = au(api(ip (23) i (25))) = cu(awn(Qip (@) ajir (25))) = culi(z)-azi(z))).

Hence this definition is independent of choice of k. Also, this definition is independent of choice of
representation of b. To see this, let b = as(z;/) for another j'. Then, let k > ¢, j, j/, thus

a-a(x)) —a-aj(zj) = ap(in () ajr ;) —an (i (@) oy (50)) = ag (i () (ajr () — ajr(x)0)))

thus it suffices to show that aj(x;) — ajp(xj) = 0. To see this, let ¢ = i (z;) — aji(z;). Then,
ag(c) = 0 since they are the same representation of b on the direct limit. By Exercise 2.15, 3 > k
such that ay;(c) = 0. This implies

0 = amioge(zy) — ayon(xyr)) = aji(x;) — gz ) = ajlz;) = ajulzy).
Thus,

a-aj(xy) —a-aj(zy) = ag(a(@) () — i) = oo ap(aur (@) (aji(T;) — k()
= aq(aar(;) (ei(zj) — ajulz;r))) = i (0) = 0.

Thus product is well-defined. Hence A has a ring structure.
Also, for any a,b € A;,
a;(ab) = a;(ayi(a)ay; (b)) = a;(a)a; (b)
by definition of the product in A. Hence, «; is multiplicative homomorphism. Also, for any b € A with
b= a,(x;) for some j € I, there exists k > i, j so that

ai(1)b = ay(in (D () = ar(l - aje(z;)) = ak o ajp(z;) =b

where a;r(1) = 1 is from the fact that ay is a ring homomorphism. Hence, this homomorphism
preserves 1. Thus «; is a ring homomorphism.

To verify other axioms of the ring, for any given elements, choose some Ay that they lie and use axioms
of the ring for Ay to get desired result. Now suppose A =0 <= A; =0 for some i € I. If A =0,
then 1 = 0, thus a;(1) = 0 for all i € I. By exercise 2.15, for fixed 4, there exists j € I such that
a;;(1) = 0 Since «;; is also a ring homomorphism from A; to A;, this implies that 1 = 0 in A;, thus
A; = 0. Conversely, if A; =0, then for any j > ¢, identity 1 in A; should be 1 = «;;(1) = ;;(0) = 0.
Hence A; =0 for all j > . Now for any a € A, a = ay(zx), thus take ¢ > k, i so that

a = ag(xk) = g 0 agg(zr) = ag(0) = 0.
This implies A = 0.
Notes that each a;;|m, : R — PR, satisfies axioms in Exercise 14 as a Z-module. Thus, we can construct

ligi)‘{ as Z-module. It is clear that hﬂiﬂ is submodule of A.

Let a be a nilpotent element of A. Then In € N such that a” = 0. By Exercise 2.15, a = «;(z) thus
0 =a™ = a;(z™). By Exercise 2.15, a;(z") = 0 implies 35 > 4 such that a;;(z™) = 0. Hence, a;;(x) is
in the nilradical of A;, and

ajlo; (ai(2)) = aj(aij(z)) = ai(z) = a

implies a € limR. Thus lim PR contains nilradical of A. Conversely, if a € limfR, by Exercise 2.15,
a = a;(x;) with z; € R; by construction. Thus In € N such that 2 = 0. This implies a™ = o;(z}) =
«;(0) = 0 since by Exercise 2.21, ; is a ring homomorphism. Thus « is in nilradical of A. This shows
that lig‘ﬁ is nilradical of A.

Suppose that Je,d € A such that cd = 0 but ¢ # 0,d # 0. Then, ¢ = a;(x;),d = a;(x;) with nonzero
x;. (Notes that from ¢ # 0,d # 0, all of their representation are nonzero; otherwise ¢ = ;(0) for some
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23.

24.

representation, which implies ¢ = 0, contradiction.) Then, there exists k € T such that k > 4, j, thus
their product is

ab = ag(ir(zi)ajk(z;)) = 0.

By Exercise 2.15, there exists [ > k such that
agr(air (i) ajn(z5)) = 0.

This implies a;;(2;)aji(x;) = 0. However, since ¢, d are nonzero, so are a;(x;) and aji(z;). Thus A,
is not integral domain.

Hence, its contrapositive gives us that if each A; is integral domain, so does A.

We already knows that a collection of all finite subsets of A form a direct set structure. With the
canonical A-algebra homomorphism Ay : By — By if J C J' which is given by b; ® --- ® bjs
bj®---®bj®1®---®1, the given direct limit B forms a ring by Exercise 21. To see that its A-algebra

structure, notes that we have A — C' — B where C is direct sum of A-algebras, and C — B is a
projection. Thus if b € B, then b = a;(x) for some = € B;. Now we can define A-action as

a.b = aj(ar).

This is well-defined action since for any other representation b = a/ (y), we have a;(x) = ajuy ©
aggug(z) and oy (y) = agug o ayr,gugr(y), therefore
0=ay(x)—ay(y) =asur o (asgur(z) — oy s (y))
implies that (by Exercise 2.15) there exists K O JUJ’ such that ajuy k(s jur (x) —ay gur (y)) = 0.
This implies aji (x) — ay x(y) = 0. Thus,
aj(az) = ax o ayk(ar) = akx(acyk (2) = ax(acsk(y)) = ak o ayk(ay) = ay(ay).

Thus, this action is independent of choice of representation, thus B is A-module. Also, we already know
that «; is a ring homomorphism. Moreover, this definition makes «; be A-module homormophism
structure, thus it is A-algebra map.

Notes that what the hint suggested follows from the balancing Tor theorem. In general Torfz (M,N)
is defined as a derived functor, i.e., applying H, (— &) N) on the given projective (or free) resolution.
A

The balancing Tor theorem assures that for given any projective sequence P* — M and Q°® — N,
H,(P*QN)=H,(MQQ*). It seems that [3] intend the reader to use this theorem as a fact. So we
A A

will follow it.
i) — ii): Since M is flat, for any free resolution of N, say Q®* — N, M Q Q°* — M @ N is also exact.

(This is because every long exact sequence can be decomposed with short exact sequence, and M is
flat implies that those all short exact sequence are exact. ) Hence, Torﬁ(M ,N) =0 for any n > 0.

i) — iii) is trivial.

iii) — i): Let 0 > N’ = N — N” — 0 be an exact sequence. Then, from the Tor exact seqeunce,
Tor!(M,N") = M QN — MQN — MQN" —0
is exact. (Think about definition of left derived functor; it gives such a long exact seqeunce, and
Tor{ (M, N) = M @ N.) By iii), Tor{'(M, N") = 0. This gives one of the definition of flatness of M.
A

Finally, by the Balancing theorem, we can do the same thing with respect to when N is flat.
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25. Suppose N’ is flat. Then It gives an exact Tor sequence,

Torj' (M, N"') — Tor{*(M, N') — Tor{" (M, N) = Tor{"(M,N") - MQQ)N' -+ MK N — MEN" -0

for any A-module M. Since N” is flat, Tor{ (M, N") = 0 = Tors (M, N"). This gives us Tor{ (M, N’) =
Tori (M, N). Hence, N is flat if and only if Tor{ (M, N’) = 0 if and only if Tor{ (M, N) = 0 if and
only if N is flat by above exercise.

26. By Balancing Tor theorem and exercise 24, we already know that NV is flat if and only if Tory (M, N) =0
for all A-module M. This implies that N is flat implies Tory(A/a, N) = 0 for all a an ideal of A.
Conversely, suppose Tor;(A/a, N) = 0 for all finitely generated ideal a of A. Suppose M is finitely
generated, by x1,- -+ ,xz,. Let M; be submodule of M generated by x1,--- ,x;, with My = 0. Then,
fi i A— M;/M;_1 by a — ax; + M;_; is surjective homomorphism, thus ker f; is ideal, which implies
M;/M;_1 =2 A/aq;. for some finitely generated ideal a;. Thus we have an exact sequence

O%Mz_lﬁMZ%A/aZ%()

Notes that Tor;(My, N) = Tor1(A/(1),N)) = 0 by assumption. Suppose, to use induction, that
Tory (M;_1,0) = 0. Then, by long exact sequence of Tor,

e — TOTl(Mifl,N) =0— TOYl(Mi,N) — TOI‘l(A/Cli,N) =0—>M;,_ 1 > M; — A/Cll — 0

is exact sequence, which implies Tor;(M;, N) = 0. From M,, = M, this implies that Tor; (M, N) = 0.
Apply exercise 2.24, to get the result that N is flat.

27. Notes that idempotent ideal is an ideal a such that a? = a.

i) — ii): Let x € A. Then, A/(x) is a flat A-module, thus (z) — A is injective implies « :
)R A/(x) - ARQA/(xz) =2 A/(x) is injective. We know the exact map of a using Proposition
A

A
2.14, and it sends
aGra—r@ar—xra

and ra@ = Ta = 0. Hence « is injective zero map. This implies (z) @ A/(x) is zero. And since A/(x)
has canonical short exact sequence !
0— () > A— A/(z) =0,
tensoring with (), which is also a flat module by 1), gives us
0— (m)®(m) — A®(m) = (z) — (m)®A/(x) =0—-0
A A A
This implies (z) ®(x) = (z). Since this map sends a ® b +— ab, this implies that (z) = (x)2. But notes

A
that (z)? = {z%ab : a,b € A} C (2?) and for any az? € (22), az? = 1-az? € (x)?, thus (z) = (2?).

Done.
i1) — iii): Since (z) = (x)? for all z € A, z = ax? for some a € A, thus e = ax is idempotent, since
e? = a’2? = ax = e. Also, (¢) = () since (e) C (z) is trivial, and for any bx € (z), bz = baz® =

(bz)(az) = bze implies () C (e). Also, we showed in Exercise 1.11 such that (e, f) = (e + f — ef)
for any two idempotents e, f. Thus, every finitely generated ideal is a principal and generated by
idempotent, say e. Also, A = (e) ® (1 — e) as a module, since ae = b(1 —e¢) = (a+ble=b =
ae+be =be = ae=0 = a=0. Thus b=0. And for any x € A, ze + (1 — e) = x. Thus any
finitely generated ideal (which is principal) is a direct summand of A.

iii) — i). Let a be a finitely generated ideal, N be an arbitrary A-module. Then, A 2 a® b as a

module. Then,
N=NQRA=NRaab=NXad N ()b
A A A
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Hence, N@a — N @ A is injective map, which is induced by canonical injection a — A. Also, the
A A

short exact sequence
0—2a—-A—-b—-0

implies that b = A/a as a module, thus the long exact sequence of Tor fucntor is
-+« — Tory(a, N) = Tor1 (A, N) = Tor;(A/a,N) 2 a@ N - AQN - A/a® N — 0.

and since A itself is free module, thus Tory (A, N) = 0. Thus Tor;(A4/a,N) 2 ker(a@ N - AQN) =0
since the given map is injective. Since a, N was arbitrarily chosen, by Exercise 26, every A-module is
flat, thus A is absolutely flat.

28. In a Boolean ring, every principal ideal is idempotent. Thus, it is absolutely flat. Also, if A is a ring
such that & = 2™ for some n € N (depending on z), then x = 2" = 222"~2 implies that z € (2?),
thus (x) = (22). Hence A is absolutely flat. If B is a homomorphic image of A, then by the first
isomorphism theorem, B = A/a for some ideal a of A. Then, let (Z) be a principal ideal of A/a. Since
A is absolutely flat, z = az? for some a € A, thus = az>. This implies (Z) = (z?), done.

Suppose A is a local ring and m is maximal ideal. Then for any = € m, () = (e) for some idempotent
e by the proof of Exercise 27, thus e € m. This implies that e =0 <= x = 0. Then, f =1 — e is also
idempotent, and it is unit by proposition 1.9 with the fact that in the local ring m is Jacobson radical.
Thus, 1 = f~1f = f~1f2 = f, hence e = 0, which implies = 0. Thus m = (0), which implies that A
is a field.

Also, if A is absolutely flat, let © € A be a nonunit. Then, by 2.27, from () # 1, there exists b an
ideal of A such that A = (z) @ b as an A-module. Thus, bx = 0 for any b € b since b N (z) = 0. This
implies that x is a zero divisor.

3 Rings and Modules of Fractions

Exercise p.37. Verify that these definitions are independent of the choices of representatives (a,s) and
(b,t), and that S~1A satisfies the aziom of commutative ring with identity.

Proof. If a/s = a’ /s’ then Ju € S such that (as’ — a’s)u = 0. Thus
a/s+ b/t = (at + bs)/st = (at + bs)s'u/sts'u = ((as’u)t + bss'u)/s't(su)
= ((a'su)t + bss'u)/s't(su) = (su)(a’t +bs')/s't(su) = (a't + bs')/s't =a' /s’ + b/t

Also,
(a/s) - (b/t) = ab/st = abs'u/sts'u = a'sub/suts’ = a’b/s't = (a'/s") - (b/t).

Hence multiplication and addition are well-defined. Also, it is abelian group with respect to addition (because
of 0/s) and multiplication is associative, as usual multiplication of rational numbers did, and multiplication
is commutative, and s/s has a roll of identity for any s € S. Thus it is commutative ring with unity. O

Proposition 3.7. If M, N are A-modules, there is a unique isomorphism of S~ A-modules f : ST'M & SN —
5-1A
S~H(M @ N) such that
A
f((m/s) © (n/t)) = (m@n)/st.

In particular, if p is a prime ideal, then

My Q) Ny = (M (R) N),.
A, A
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Proof.
STM Q) SN \g/(s—lA@M) Q) (STTARN) = (M) S™4) Q) (STTAR)N)
A A

S-tA Pro 3.5 S-1A A Pro 2.14 i) S-1A A
= (MQ)S'4) QR 4 QRN) = (M)A ) S7A) RN
Exe 2.15 A S-1A A Exe 2.15 A S—tA A
= (M SR N é(S*lA(X)M)@N = STARM R N)
2.14 iv) A A 2.14 i) A A Exe 2.15 A A
= STHM R N).
Pro 3.5 A

Also, f sends

(m/s)® (n/t)— (1/s@m) @ (1/t®@n) — (M®1/s)® (1/t @n)
A (mel/st@n)—1/st®@(Mm®n)— (Mmn)/st

Proposition 3.9. Surjectivity of an A-module homomorphism ¢ : M — N s local property.

Proof. If ¢ is surjective, then M — N — 0 is exact, thus M, — N, — 0 is also exact, thus ¢, : M, — N,
is also surjective, for any prime ideal p. If ¢, is surjective for any prime ideal p, then ¢ is also surjective
for any maximal ideal m. Now suppose that ¢y, is surjective. Let coker(¢) = N/Im(¢) =: N’. Then,
M — N — N’ — 0 is exact. Thus, My, — Ny — N}, — 0 is exact for any maximal ideal m. However, since
¢m is surjective, N}, = 0 for any maximal ideal m. By Proposition 3.8, N’ = 0. This implies that (¢) = N,
thus ¢ is surjective. O

Proposition 3.11. a is contracted ideal from the map f : A — S™'A if and only if no elements of S is a
zero divisor in A/a.
Also S7'r(a) = r(S~ta).

Proof. a is contracted ideal if and only if a®® C a by Proposition 1.17 iii). Also, a®® C a holds if and only
if sx € a for some s € S implies z € a. To see this, if a®® C a, suppose sz € a for some s € S. Then,
sx/1 € a®, hence z/1 € a°, therefore x € f~1(a®) = a® C a. Conversely, if the statement holds, the let
x € a®®. Then z/1 € a®*® = a® by proposition 1.17, z/1 = a/s for some a € a,s € S. (This is because finite
linear combination in a® can be denoted as a form a/s in S~1A.) Hence, sz/1 = a/1, thus t(sx — a) = 0 for
some t € S, this implies (st)z € a, and by the statement, = € a.

Lastly, sz € a for some s € S implies « € a holds if and ounly if no s € S is a zero divisor in A/a. If the
lefthandside holds, then let s € S such that for some ¢ € A/a, st = 0. This implies that st € a. This implies
st/1 € a¢, hence st/1 = a/qg = t/1 = a/q for some a € a,¢' € S, thus u(¢'t —a) = 0 for some u € S,
hence uq't € a, and from the fact uq’ € S with the lefthandside implies ¢ € a, thus £ = 0. This shows that 3
is not the zero divisor in A/a. Conversely, suppose that no s € S is zero divisor of A/a, and let sx € a for
some s € S. Then, 5T = 0 implies T = 0 since 3 is not a zero-divisor.

For the last statement, by Exercise 1.18 we have S™'r(a) C r(S~'a). Let z/s € r(S~'a). Then,
x"/s"™ € S~'a. This implies that 2" /s™ = a/t for some a € a,t € S. Thus, 2"tu = s"au for some u € S.
Hence z"tu € a, thus xtu € r(a), therefore ztu/1 € S~1r(a), thus ztu-1/stu = z/s € S~1r(a), done. O

1. Let M be a finitely generated module (generated by 1, - - ,x, such that S™1M = 0. Then, z;/1 = 0/1
for any ¢, thus ds; € S such that s;z; = 0. Then, s = H:‘L:1 s annahilates M.
Conversely, suppose sM = 0 for some s € S. Then, m/t = ms/ts = 0/ts = 0/1 for all m/t € S~ M,
this implies S™'M = 0.

2. Let a/s € S~'a for some a € a,s € S = 1+ a. Then by Proposition 1.9, it suffices to show that for
any y/t € ST1A, 1 — (a/s) - (x/t) is a unit in S~1A. To see this, notes that
1+ (b—ax)

1—(a/s)  (z/t)=1—ax/st =1— (azx)/(1 +b) for some b € a, hence = 5
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thus b — ax € a implies 1+ (b—ax) € S, thus it is unit. Hence, a/s is in the Jacobson radical of S~1A.

Now we want to show the statements that if M = aM and M is finitely generated, then 3z = 1 mod
a such that M = 0.

suppose that M = aM. Then, S™*M = (S~'a)(S~'M) by Proposition 3.11 v). By the above proof,
we know that (S~!a) is in the Jacobson radical of S~ A, and S=!M is still finitely generated; (if M is
generated by x;s, then S~1M is generated by z;/1s.) Thus by the Proposition 2.6 Nakayama’s lemma,
S~!M = 0. By above exercise 3.1, 3z € S such that zM = 0. Since S = 14 a, £ = 1 + a for some
a € a, done.

. Let f: (ST)"'A — U1 (S71A) by z/st — (x/s)/(t/1). First of all, it is well-defined; if z/st = 2’/s't’,
then xs't's1t; = a’stst; for some q € ST.

(/") /(' J1) = (a'stsity /s’ ss1)/(t1tt' /1) = (w8t s1t1 /8 ss1) [ (t1tt' /1) = (wt't1/s)/(t't1t/1) = (x/s)/(t/1).
where last equality comes from the observation that (z/s)/(t/1) = (z/s)/(t/1) - 1/1 = (z/s)/(t/1) -
(t't1/1)/(t't1/1) = (at't1/s)/(t't1t/1).

Also, if f mapst /st to 0, then (x/s)/(t/1) = (0/s)/(t/1), thus (¢'/1)(t/1)(x/s — 0/s) = O for some

t' € T, thus tt'x/s — 0/s) = 0, which implies t#’sz = 0. This implies that (x/st) = xtt's/sttt’'s =
0/s%t?t’ = 0. So f is injective. And, for any element in U~1(S71A) can be denoted as (z/s)/(t/1),
thus it has preimage x/st, which shows that f is surjective. And f sends 1/1-1 to (1/1)/(1/1), so it
sends 1 to 1, and

J(@/st+y/s't) = f(as't +yst)/sstt) = (es't! +yst) [ss' (1 J1) = (et [5) + (yt/s') /(¢ /1) = (2/8)](t]1) + (y/5'
F /st -y/s't) = (wy/ss)/(t /1) = (@/s) - (u/s)/ (/1) - (/1) = F(/st) - Fly/s'E).

. Notes that B is an A-algebra along a.b := f(a)b. Thus S™'B = {z/s: 2 € B,s € S} is an A-module.
Also, T7'B = {z/f(s) : * € B, f(s) € T}. Hence, take ¢ : S™'B — T1B as ¢(x/s) = z/f(s). First
of all, it is well-defined, since for any z/s = z'/s', f(t)(zf(s') — 2'f(s)) = 0 for some t € S, thus
x/f(s) =a'/f(s"). Also, it is injective since ¢(x/s) = 0 implies f(¢')f(s)z = 0, thus z/s = 0/s since
this is equivalent to say there exists ¢ € S such that zf(s)f(¢t) = 0. Also, it is surjective, and it is
clearly homomorphism.

. By Corollary 3.12 and the given condition, R, = 0 for all prime ideal p. By Proposition 3.8, this
implies R = 0.

The answer for next question is no. Suppose that A = H?Zl k;, where k; = k an algebraic closed
field. This is not integral domain, since (1,0,---,0) - (0,1,0,---,0) = 0. Then, by Execise 1.22,
Spec(A) = {p; := 0x [[},; k;}. Thus A—p; =k [[7, K;. Then, also notes that each k; as embedded
in A is an ideal, thus an A-module, this implies A = &7_,k;. Hence, if we let S = A — p;, then

0 0.W..

To see this, if ¢ # j, then e; - k; = 0 since we regard k; be an elements in A whose tuple expression
has only nonzero component on j-th position. Since e; € S, by Exercise 3.1, S™'k; = 0. If i = j,
then its elements has a form /s where x € k;, s is a tuple in A such that i-th components is nonzero.
Now define a map f: S™'k; = k; by (0,--+,0,2;,0,---,0)/(81,++ ,8i,"*+ ,Sn) — x;/s;. First of all,
it is well-defined; if x/s = a’/s’, then there exists ¢ € S such that t(zs’ — 2’s) = 0. This implies that
t;x;s; = t;xls;, and since all variables in the equation is from the same field, so we can get rid of ¢;, thus
x;8, = x}s;, this implies x;/s; = x} /s, since s;, s; are nonzero. Also, it sends 1 to 1, and it is surjective,
since for any z; € k;, f(0,---,0,2;,0,---,0)/(1,---,1) = x;. Also it is injective, since f(z/s) = 0
implies that z;/s; = 0 implies z; = 0. Hence, using Proposition 3.11 saying that S~ commutes with
finite sums,

STA=EP Sk = k.
j=1
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8.

Hence for any prime ideal p;, the localization at p; is integral domain. But A itself is not integral
domain.

First of all {1} € X hence it is nonzero. And if C is a chain in ¥, then U = (..o c is also a
multiplicatively closed sets. To see this, if x,y € U, then Jcz,c, € C such that x € ¢,y € ¢y, and
since C'is chain, one of ¢, or ¢, is contained in the other. WLOG, suppose ¢, 2 ¢,. Then, zy € C, C U.
Also U is maximal elements of C'. Hence, by the Zorn’s lemma, . has a maximal element.

Now suppose S € 3. We claim that A — S has a prime property, i.e., zy € A — S impliesz € A — S
ory € A— S. To see this, suppose not. Then, both =,y € S, thus xy € S, contradiction. Also, we see
that A — S is an ideal when S is maximal multiplicative subset. To see this, notes that for any a € A,
the smallest multiplicative set containing ¢ and S is S when a € S, and S, = {sa™ : s € S,n € N}
when a € A — S. However, since S is maximal in X, S, strictly contains S implies 0 € S,. Thus,
sa™ = 0 for some n > 0, since 0 ¢ S. Thus, suppose that a,b € A — S. Then, sa”™ = 0,tb™ = 0
for some s,t € S,n,m € N. This implies that for p = n+m — 1, a"|(a + b)?,b™|(a + b)?, hence
st(a+b)? =0. Thus, a+be€ A—S. Also, for any x € A, a € A— S, s(ax)" = (sa™)z™ = 02" =0
implies ax € A — S. Hence A — S is a prime ideal. Also, it is minimal since otherwise, if p C A — S,
this implies T := A —p D S and 0 € T, hence T' € X, which implies T' = S by maximality of S, thus
A—p=S5thusp=A4A-5.

Conversely, suppose A — .S is a minimal prime ideal of A. Then, there exists T' € ¥ which is a maximal
elements and S C T, thus A — T is prime ideal contained in p. However, by minimality of A — .5,
A—S=A-—T, which implies S = T, thus S is maximal element in Y. Conversely, if S is a maximal
elements, then A — S is a prime ideal, and if there exists a prime ideal p containing A— S, let T'= A—p
,and since 0 € p, T € 3, and T C S. Maximality of S implies T'= 5, thus p = A — S. Hence S is a
maximal element in X.

(a) Suppose A — S = J;c; pi where p; is a prime ideal in A. Since 2,y € § = wxy € S is clear by
definition of S, we should verify zy € S implies x,y € S. Suppose x € A—S. Then for any y € A,
since x € p; for some i € I, xy € p; C A — S. Thus its contrapositive says the desired result.
Conversely, suppose that S is saturated. It suffices to show that for any a € A — S, a prime ideal
containing a is disjoint with S. Now let ¥ be a collection of ideal containing a and disjoint with
S. First of all, (a) NS = 0 since za € S implies a € S, contradiction. Hence (a) € ¥. And for any
chain of ideals in ¥, its union is a maximal elements of the chain by the usual argument. Hence
this 3 has a maximal elements, say p. Then, for any maximal elements p in 3, we claim that p
is a prime. To see this, if z,y ¢ p then (x) + p and (y) + p contains p strictly, but not in X, thus
(2)+pNS # 0 # (y)+p. Let s € (z)+pNS,t € (y)+pNS. Then, st € ((z)+p)((y)+p) C (zy)+p,
hence zy ¢ p.

(b) Define S be a complement of the union of the prime ideals which do not meet S. Then, definitely,
S D S. Also, if there exists another saturated multiplicative monoid T' containing S and subset
of S, then, A — T is union of prime ideals, and each of this ideal do not meet 7', thus do not meet
S, hence it is contained in A —S. This implies A—7T C A— S implies T2 S, hence T = S. Thus,
S is the unique smallest saturated multiplicatively closed subsets containing S.

If S =1+ a, then a prime ideal p meets S if xt = 1+a € p for some a € a. This implies 1 =z —a,
hence a +p = (1), i.e., coprime. Conversely, if a +p = (1), then a + = 1 implies z = 1 — q,
thus SNp # (. This implies that S is a complement of the union of all prime ideals which is
not coprime with a. Notes that for each prime ideal p not coprime with a, p + a is contained in
a maximal ideal m, since they are not coprime. Also, definitely, this m is contained in the union.
Thus,

S=A\ U m

méeSpec M (A)
mDa

where Spec M (A) is a set of all maximal ideals of A.
i) — ii): For given t € T, ¢~ 1(1/t) exists in S~1A by bijectivity of ¢. Hence, ¢(t/1-¢~1(1/t)) =
(t/1) -1/t =t/1-1/t =1/1 and ¢(1) = 1 by bijectivity implies that t/1-¢~1(1/t) = 1/1. Hence, t/1
is a unit.
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ii) — iii): Since t/1 is a unit in ST!A, there exists a/s € ST1A such that at/s = 1/1. Hence,
g(at — s) = 0 for some ¢ € S, thus gat = ¢s € S. By letting x = qa, done.

iii — iv): If t € T, by iii), Ja € A such that at € S C S, this implies

ae S,tesS.

Hence T C S.

iv) — v): If a prime ideal p do not meet S, then it doesn’t meet S by definition, thus it doesn’t meet
T. Tts contrapositive is what we want to have.

v) — 1): To see the injectivity, we claim an existence of prime ideal with respect to some ideal outside
of S.

Claim XIII. Let S be a multiplicative subset, and a be an ideal such that anNS = (). Then there exists
a prime ideal p such that pNS =0 and p D a.

Proof. Standard Zorn’s lemma proof. Let ¥ be an ideal containing a and contained in A — S ordered
by inclusion. Then a € ¥ and any chain has a a maximal element, which is union of all elements in
the chain. Thus, by Zorn’s lemma dp € ¥ a maximal element.

Then, p is an ideal, and A—p is multiplicative set containing S. Thus, if z,y & p, then (z)+p, (y)+p are
ideals meeting S by maximality. Hence, take s € ((x)+p)NS,t € ((y) +p)NS then st € ((zy)+p)NS.
This implies zy & p, thus p is prime ideal. O

This induces another claim.

Claim XIV. Let a be an ideal of A. If f & r(a), then Ip a prime ideal containing a such that f & p.
Proof. Let S = {1, f, f?,---} and use above claim to get p. Then, p = r(p) 2 r(a). O

Let ¢(a/s) =0/1in T~ A. Then 3t € T such that ta = 0. It suffices to show that a/s = 0/1 in S~ A.
If not, then Ann(a) NS = (. Hence, Ann(a) C A — S. By the above claim 3p a prime ideal containing
Ann(a) and p NS = (. This implies p doesn’t meet T by v), so t € Ann(a), contradiction. Hence
a/s=0/11in S~tA. So ¢ is injective.

To see surjectivity, we claim that V¢t € T, Ja € A such that at € S. Otherwise, (t) NS = () for any
t € T thus AT NS = (), thus by the claim, there is a prime ideal p containing AT, and p NS = (). This
implies pNT = 0 by v), contradiction since p D AT D T. Thus the claim is true, and by the claim, for
any b/t. b/t = ab/at thus ¢(ab/at) = ab/at = b/t.

. Sy is saturated is clear; just pick product and assume one of productee is zero divisor. Now we claim
that Sy is contained in any maximal elements in ¥ from Exercise 3.6. This shows that D := A — Sy
contains A — S, a minimal prime ideal. And by Exercise 3.6, every minimal prime ideal corresponds
to maximal elements in X, this shows that D contains every minimal prime ideal.

To see S is contained in any S € ¥ which is a maximal in 3, suppose not; then SyS is a multiplicatively
closed subsets containing S strictly. Thus SpS should contain 0 since it is not in ¥. Thus sgs = 0 for
some sg € Sp, s € S, which implies that sq is a zero-divisor, contradiction.

(a) If S contains Sy strictly, then S contains a zero divisor, say b € S and bc = 0 for some ¢ € A.
Hence, for f : A — S™'A by a + a/1, then f(c) = ¢/1 = ¢b/b = 0/c = 0. Thus ¢ € ker f # 0,
so f is not injective. Also we should show that f : A — SglA is injective. To see this, if
f(a) =a/1 =0, then sa = 0 for some s € Sy, but since s is non-zero-divisor, a = 0.

(b) Let a/s € Sy ' A for some a € A,s € Sy. Then, if a € Sy, then a/s is unit; since s/a - a/s = 1/1.
If a & Sp, then a is zero-divisor by definition of Sy, thus b € A such that ab = 0, hence a/s-b/s =
ab/s? =0/s%> = 0/1.
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(c) Let ¢ : A — Sy 'A. Then, ¢(a) = 0 implies a/1 = 0/1 thus as = 0 for some s € Sy. Since Sy
consists of all units, as = 0 implies a = 0. Thus ¢ is injective. Also, surjectivity is clear; for any
a/s € Sy tA, as™'/1 = a/s, thus ¢(as™') = as~!/1 = a/s, done.

10. (a)

Claim XV. X Let M be a S~'A module. Then, it can be regarded as A-module in a canonical
way using the canonical map A — S™'A. Then,

M= S"'M|s as a S~ A-module
where M| 4 is the same M as an A-module.

Proof. Let ¢ : M — M| — S~ M| be a map sending m to m/1. First of all, ¢ is injective since
¢(m) = 0 implies m/1 = 0/1 implies ds € S such that sm = 0 in M|4. Hence, (s/1)-m = 0.
Hence (1/s) - (s/1) -m = 0 implies m = 0. Also, it is S™*A — homomorphism, since for any
a/s€ S~tAand me M

o((a/s) -m) = (am/s)/1 = s(am/s)/s = (am/1)/s = (a/s) - (m/1),

and additivity holds trivially. Now, ¢ is also surjective homomorphism since for any m/s €

“H(Mla), ((1/s) -m) =1/s - (m/1) =m/s. H

Now suppose that A is absolutely flat. Take M be any S~'A module. Then M|, is also flat,
hence, for any injective S~ A-module injective map f: N — N’,

M f: Na@RQ S Mla— N'[a(R) M|a
A A A
is injective as an A-module homomorphism. Then by Proposition 3.3,

TN ST I M[4) = STHN[4R) ST M| 4)
A A

is injective as a S~'A-module homomorphism. Now By Proposition 3.7,

TN ST M[4) = ST'N|4 (X) ST M4 and ST N’\A®S M) = S7IN'|4 ® STIM| 4
A

S—1A

as a S~'A-module. Thus, a map

STINA Q) ST M[a— STHN[A Q) ST M]|a) = STHN| ®s 'M[a) = STIN'[4 Q) ST M]a
S-14 A S—1A

is injective as a S~!A-module homomorphism. Since S™!N|4 = N, SPAS™IM|4 = M, and

STYASTIN’|4 = N, this implies that N @ M — N’ @ M is injective. Thus M is flat. Since
5-1A S-1A

we take an arbitrary S~!A-module M, S~!A is also absolutely flat.

(b) If A is absolutely flat, then Ay, is absolutely flat by i). By Exercise 2.28 stating that absolutely
flat local ring is a field, Ay, is a field. Conversely, suppose that Ay, is a field for any maximal
ideal m. Let M be an A-module. Then, M, is Ay-module, and since A, is a field, M, is a free
Apn-module. (Since every module over a field is vector space, and vector space always has a basis.)
And every free module is flat. Hence M, is flat for all m. By Proposition 3.10, M is flat. Since
M was arbitrarily chosen, A is absolutely flat.

11. 4) — 4i). Suppose that there is a prime ideal p strictly contained in a maximal ideal m. Then, they
are still prime and maximal even if we send it to A/, since by Proposition 1.1 this correspondence of
ideal is order preserving, and by Exercise 1.21 iv), Spec(A/9R) — Spec(A) is natural homeomorphism.
Denote p and m are image of p and m in A/9R. Hence, this implies that pm and WM are prime and
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12.

13.

maximal ideals in (A/R)m by Corollary 3.13. Notes that Corollary 3.13 also implies that image of p
strictly lies in that of m. By Exercise 3.10, (A/MR)w is a field, thus (0) = mg,by maximality. This
implies Mz = P, contradiction.

1) — iv): Let p, # p, € Spec(A/R). Then, p, and p, are distinct maximal ideals by ii). Thus p, +p,
is unit ideal, since it is an ideal strictly containing both maximal ideal. Thus, Ja € p,, b € p, such that
a + b= 1. This implies (a) + (b) = 1. By Exercise 2.27 ii), (a) = (e), (b) = (g) for some idempotents
e,g. Thus (e,g) = 1. Hence, let f = e(1 — g). Then, gf = e(g —g?) =0. But e = eg + f € (g, f)-
Hence, (g, f) = (1). Since g € (b) C p,, we have y € X,. Similarly, since f € p,, z € X;. Now,
XrNX, = Xy = Xo = 0 by Exercise 1.17. 1), ii). Hence, Xy and X, are two disjoint open
sets in Spec(A/R) separating x and y. Hence Spec(A/R) is Hausdorff, so does Spec(A4) by natural
homeomorphism.

iv) — 411) : Hausdorff is T2 space, so it is T'1.
ii1) — ii): If every singleton is closed, this implies that every prime ideal is maximal by Exercise 1.18.

1) — i): Suppose that every prime ideal of A is maximal. Then, by order preserving 1-1 correspondence
from Proposition 1.1, every prime ideal of A/ is maximal. Thus, for any maximal ideal m of A/9R,
My is the only maximal ideal of (A/9R)y and also the only minimal prime ideal of my,, thus my, is
nilradical in (A/R)m. However, A/R is integral domain, thus there is no nilpotent elements, which
implies my = (0). Hence (A/M)n is field. Since m was arbitrarily chosen, this implies that A/fRis
absolutely flat by Exercise 3.10.

We want to show that T (M) is a submodule of M. Notes that for any torsion elements z,y € T (M),
Ja,b € A such that ax = 0,by = 0 Hence ab(z + y) = 0 implies  +y € T(M). Also, for any a € A,
ax € T(M) since b € Ann(z) also annihilates ax. Thus, T(M) is submodule of M.

(a) Let T € M/T(M) such that T # 0. If @ € Ann(Z), then a.7 = @z = 0 implies az € T(M). Thus
3b € A such that baz = 0 and b # 0. However, since x ¢ T(M), (otherwise T =0 ), ba = 0. Since
A is integral domain, ¢ = 0. Thus Ann(Z) = 0. Hence M /T(M) is torsion free.

(b) Let z € T(M) and f(x) € N. Then, take nonzero b € Ann(z). Thus bf(x) = f(bx) = f(0) =0
implies f(z) € T(N).

(c) To see that torsion functor is left exact, By ii), if M’ — M is injective, then T(M') C T(M) is
also injective. Also, if we let f: M’ — M and g : M — M", then f|ppy is injective as we've
shown and f|r () © glrary = 0 implies that Im f|7(az) € Img|7(ar). To see the other direction,
let = € ker g|p(ar). Then, by exactness of original sequence, 3y € M’ such that f(y) = g. Now
we claim that y € T(M’). To see this, since € T(M), Ja € A such that a # 0 and az = 0.
This implies af(y) = 0. Hence, f(ay) = 0 By injectivity of f, ay = 0 Hence y € T(M’). Thus,
kerg\T(M) Q IIII']C‘T(]\/[/)7 done.

(d) Ifwelet S = A—{0}, then K @ M = S~'M by Proposition 3.5. with exact map a/b®&m +— am/b.

A

Thus, 1 ® m = 0 if and only if m/1 is zero in S~'M if and only if Ja € S such that am = 0 by
Exercise 3.1.

Notes that both T(S~*M) and S=}(T'M) are submodule of S™'M. Now let m/s € T(S~'M). Then,
Ja € A such that a # 0 and a-m/s = am/s = 0. This implies that 3¢t € S such that tam = 0 in M.
Since ta # 0, m € T(M). Hence m/s € S~(TM). Conversely, let m/s € S™1(TM). Then, Ja € A
such that a # 0 and am = 0 in A. Hence, m/s € T(S™'M) since a-m/s = am/s = 0/s.

To see the TFAE,

i) —it): T(M,) = (T'(M)), =0, =0.

1) — 4ii): clear.

1) — 4): Let I, : M — M by z — ax. It suffices to show that [, is injective for all a € A\ {0}.
Notes that by given condition, (lg)m : Mw — My by z/s — az/s is injective for all a € M and

for all maximal ideal m. To see this, suppose that there exists [, which is not injective for some
a € A and some maximal ideal m. Then, Im/s € My, such that az/s = 0. Since My, is torsion free,
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14.

15.

a.(x/s) = ax/s = 0 implies a = 0, contradiction. Hence, by Proposition 3.19, [, is injective for all
a € A\ {0}. This implies that M is torsion free.

By Proposition 1.1, every maximal ideal in A/a corresponds to every maximal ideal in A containing a.
Now,

0= Mgy/(aM)n (M/aM)m 2= Aw &) M/al.
A

Cor 3.4 iii) Prop 3.5
as Apm-module. Now for any a/s € ap,,
a/s@m=1/s®am = 0.
This implies that we can regard Am @ M/aM as A/a-module isomorphic to (A/a)m @ M/aM. This
A

Ala
is because all a,, part in A, is zero, and all action over a is also zero. Hence,

(A/a)m @) M/aM = (M/aM)p/q =0
Ala Prop 3.5 and some fact

for any maximal ideal in A/a. By proposition 3.8, M/aM is 0 as A/a-module. This implies that
M =aM.

Now we will prove the “some fact.”
Claim XVI. XI (A/a)n = (A/0)m/a as A/a-module.
Proof. Let ¢ : (A/a)m — (A/a)m/a by @/s — @/s. First of all, it is well-defined; if @/s = a//s’, then
3t € A —m such that tas’ = ta's, which is equivalent to say that fas’ = ta’s. This is equivalent to say
that a/s =a'/s’.
Also, it is additive homomorphism since

p(@/s+b/t) = at + bs/st =a/s+ a/t.

Also, for any a € A, B B o o
a.¢p(b/s) = a.(b/35) = ab/5 = ¢(ab/s)
This implies that ¢ is A-module homomorphism. Also, we already know that for any b/s € (A/a)m,

and a € q, B -
a.(b/s) =ab/s =0/s.

Hence any two representative a and a’ of @,a = a’ + t for some t € a, thus
a.(b/s) =ab/s =a'b/s =a'.b/s.
This implies that (A/a)y has a natural A/a-module structure. Hence, for any ¢ € A/a,
#(¢.b/s) = bc/s =¢.(b/3) = cp(b/s).

Thus ¢ is A/a-module homomorphism. Finally, surjectivity is clear; just take representatives. Injec-
tivity comes from the observation that

#(b/s) =b/5=0/T = bs=0 = bs € a.
Then, b/s = bs/s? = 0/s2, thus done. O

Let x1, -+ ,z, be a set of generators and eq,--- , e, be the canonical basis of F'. Then, let ¢ : F' — F
by ¢(e;) = x;. Then, ¢ is surjective since any element can be denoted as Z?:l a;x;, which is image of
Z;L:1 a;e;. To show ¢ is isomorphism, need to show that ¢ is injective. By Proposition 3.9, it suffices
to show that ¢, is injective for any maximal ideal m. Assume that A is local ring. (Or, thinking
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16.

about the case Ay, for a fixed maximal ideal m, and working with maximal ideal mA,,. ) Fix m and
let N = ker ¢ and let k = A/m be the residue field of A. Now notes that Tor sequence over k gives an
exact sequence

= Tor (k, F) > kQN = kR F — k(R F — 0.
A A A
Since F is flat, Tor{ (k, F) = 0 by Exercise 2.24 (3) and balancing Tor theorem. Thus,

O—>k®N—>k®F—>k®F—>O.
A A A

is exact. And k@QF =k @?:1 A= EB;L:l(kJ®A) = k™. Thus, k™ has a k-vector space structure.
A A A
And given map 1 ® ¢ : k@ — F — k@ F induces a map ¢ : k" — k™ by
A A

qR T R P(x;) = q R e; > qe;.
Also, notes that {1 ® x;} forms a basis of k™ since every basic elements in k@) F is a sum of the forms

A
7 ® a;x; = 4;g ® x;, and dim k™ = n implies {1 ® z;} is linearly independent. By similar argument,
{1 ® e;} forms a basis of k™. Also, 1 ® ¢ maps a basis to another basis, and it is linear by definition
of ¢, and it is scalar multiple homomorphism since for any ¢ € k, ¢é(1 ® x;) = ge; = ¢(q ® ;).
Thus ¢ is not only A-module map but also k-vector space homomorphism, i.e., linear transformation.
And, ¢ is surjective, so does isomorphism since it is finite dimensional vector space map. Thus by
exactness, k ® N should be zero A-module. By Exercise 2.12, we know that N is finitely generated.
Also, 0 =k® N =A/m@ N = N/mN implies N = mN. Since we assume A is local ring, thus m is
A

the Jacobson radical, therefore by Nakayama’s lemma, N = 0.

From this, we know that ¢ is also injective, thus it is isomorphism as a module map. Now we can
see that {z;} is linearly independent; suppose that Z?Zl ajzj = 0. Then, ¢(3°7_, a;jx;) = 0 implies
Z?zl aje; = 0. Since {e;} is canonical basis, a; = 0 for all j. This implies {z;} is linearly independent.
Suppose that if {x;}™, with m < n is a generating set of A", than add any elements 41, - , Ty
on the generating set. Then, by above argument, there is a bijection sending {z;}_; to {e;}?, which
induces an automorphism on A™. However, since %, 11 is generated by {z; },, m+1 = 27;1 a;x; with

nonzero a;s, thus ¢(x,,+1) = (;S(Z;n:l ajx;) implies {e;}7_; is not linearly independent, contradiction.

Suppose f: A — B be a ring homomorphism inducing B as A-algebra.

i) — 4i): Let p € Spec(A). Then, by i), p¢® = p. By Proposition 3.16, p is a contraction of a prime
ideal of B, which implies it is image of f*. Since p was arbitrarily chosen, f* is surjective.

1) — 4i4): Since f* is surjective, m = f*(n) for some ideal n € Spec(B). This implies that m = n°.
Thus, m® = f(m) Cn C (1). Hence m® # (1).

iii) — iv): Let & € M such that z # 0. Then M’ := Ax is a submodule of M. Since B is flat A-module,

notes that 0 - M’ — M — M/M’ — 0 implies 0 - M — Mp — Mp/Mp — 0 is exact. Thus,

Mp # 0 implies Mp # 0, thus it suffices to show that Mp # 0. Notes that A — M’ = Az by a — az is

surjective map, thus M’ = A/a for some ideal a. (Since M’ is nonzero module, a # (1).) This implies

that BQ A/a = B/a® by Exercise 2.2 stating that My 2 BQ A/a = B/aB = B/f(a)B = B/a°.
A A

Since a is proper ideal, it is contained in a maximal ideal m, and by condition iii), m¢ # (1). This
implies that My # 0. Thus, Mg is nonzero.

iv) = v): Let M’ =ker(M — Mp) where M — Mp by x — 1 ® x. Then, we have an exact sequence
0—-M — M— Mg
and since B is flat,

0— Mp— Mp — (Mp)p
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18.

is also exact. By exercise 2.13 with N = Mp shows that this given map Mp — (Mp)p is injective.
Thus, M — Mg is injective zero map, which implies M = 0. Now by below claim, M’ = 0. Thus
the map is injective.

Claim XVII. Let f : A — B a ring map and B is flat A-algebra, and M is a module. Then,
Mp =BQ M =0 implies M =0
A

Proof. Suppose M is nonzero. Then, 3z € M which is nonzero elements, thus we have
0— Az - M — M/Az — 0.
Now by tensoring with B, we get an exact sequence
0— Bx— Mg —>B®M/Azx — 0

and from 0 — Bx — Mp — Mp/Bx — 0, we know that B ® M/Ax = Mp/Bx. Since Mp is zero,
and Bx — Mp is injective map, this implies Bx = 0. Hence x = 1.x = 0 implies z is zero element in
M as an abelian group, contradiction. O

v) = i): Let M = A/a for fixed ideal a. By Exercise 1.17 i), we have a C a®“. So suppose that a C a®c.
Then, 3f € a®“\a. Then, a®®/a is nonzero as a submodule of M. By condition v), ¢ : M — Mp = B/a®
by T — 1®T — ¢(z) is injective where ¢ is a ring homomorphism A — B making B as a flat A-algebra.
Thus, ¥(f) # 0, however, ¢(f) = 0 since a®“® = a®, contradiction.

f is flat means that f induces B be a flat A-algebra.
Let ¢ : N — M be an injective A-module homomorphism. Think about the diagram

Np 225 My

L

Ne 29 Mg

First of all, ¢¢ is injective since g o f is flat. Also notes that
C = =~ ~ Ne.
Qo) -CQBRN = (C@H@N=No
B B A Exercise 2.15 B A
Thus, Ng = CQ Np by 2 — 1 ®  is a map defined in Exercise 3.16 v), and since g is faithfully flat,
B

so it is injective. Hence in the above diagram, the bottom, left and right maps are injective. Since
they commutes, ¢ 5 must be injective.

Let S = A\p,and T = B\ q. Then, B, = S7'B, By = and f(s) € T induces a map A, — B, by
a/s+ f(a)/f(s). Also, By, = f(S)"'B and from f(S) C T, Exercise 3.3 gives an isomorphism

By =T'B=U"'(f(S)"'B) = U~\(B,)
where U = {t/1 € B, : t € T}. Then, we can take a map
gt Ay = By > U™ (By) = By by w/s = f(2)/f(s) = f(2)/f(s).

Thus this map factor through the map A, — B;. Now notes that A, — B, is flat over A, by
Proposition 3.10. In other words, B, is a flat Ap-algebra. Also, By ia a flat By-module by Corollary
3.6. Now notes that A, is a local ring with the maximal ideal pA,. Then, g(pA,) C qBq. Thus,
(pAp)¢ # (1). Hence g is faithfully flat by Exercise 3.16 iii), thus Spec(B,) — Spec(A,) is surjective,
by Exercise 3.16 i).
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(a)
(b)

If Supp(M) = 0, then M, = 0 for all prime ideal p, thus M = 0 by Proposition 3.8. Conversely,
if M =0, then Supp(M) = 0. Now take contrapositive.

Let p be a prime ideal, S = A\ p. Then, by 3.4 iii), (4/a), = S~*A/S~'a. First of all, notes that
p is support of A/a if and only if S~'a # s71A; to see this, since a is proper ideal (thus it has no
unit of A) and contained in S¢, a/1 € S~ A are nonunits, thus ideal generated by S~'a is proper
ideal. It is equivalent to say that 1/1 # a/s € S™'a for any a/s € S~'a. This is equivalent to
say that there is no t,s € S such that ts = ta € an S for any a € a. Thus this is equivalent to
saying that a NS = (). This is equivalent to saying that a C p. This is equivalent to saying that
p e V(a).

For any prime ideal p, by Proposition 3.3, 0 — M, — M, — M, — 0 is an exact sequence.
Thus, p € Supp(M) if and only if M, is nonzero if and only if either M, or M, is nonzero.
(If both are zero, the by exactness, M, = 0, contradiction.) This is equivalent to say that
p € Supp(M,) U Supp(M,)).

If p € JSupp(M;), then the inclusion M; — M induces another injection (Af;), — M, by
Proposition 3.3. Hence, M, is nonzero, thus p € Supp(M). In other direction, we cannot use
corollary 3.4 directly, since the sum maybe infinite.

To see this, notes that @ M; — > M; = M has natural injective map. We claim that

Claim XVIIIL. Tensor product commutes with arbitrary direct sums. This induces localization
commutes with arbitrary direct sum, i.e.,

STHEP M) =P s M

for arbitrary direct sum (coproduct.)

By this claim the induced map by Proposition 3.3 €D(M;), = (B M;), — (3° Mi)p = M, is also
injective. Hence, if (M;), = 0 for all 4, then M, = 0. Its contrapositive says that if p € Supp(M),
then p € |J Supp(M;).

Proof. Proof of the claim Let €,.; M; be direct sum of an arbitary module. Now define a map

f : N x @M1 — @N@ M; by (n, (mi)ig) — (n®ml)1€1
icl icl
First of all, it is bilinear since given tensor operation is bilinear. Hence, by the universal property,
this map induces amap f: NQ P,.; M; — P,c; N ® M; by n® (m)ier = (n ®@ my)ier. Then
A
we claim that it is isomorphism. To see this, f((n®m;);cr) = 0 implies n ® m; = 0 for all 4, thus
n =0 or all m;s are zeo, which implies n ® (m;);c;r = 0. Also, it is surjective in clear sense.

Now we can apply this fact to show that S~! commutes with arbitrary direct sum.

STHUPM) = sTAQDM)=PSTAQM: = PSTIM:
A A

Prop 3.5 Prop 3.5

We just leave a claim which will be helpful for future. (Maybe.)

Claim XIX. For any multiplicative subset S of A, we can give a direct system structure on S,
so that S™'M is isormophic to h%mees M.

Proof. First of all, define order on S. Let s < t if Ju € S such that ¢ = us. Then S is directed
set, since for any s,t € S, s < st and t < st. Also, for given A-module M, for each s € S
let M, be a localization of M by {1,s,s% ---}. Then for each pair i,j € S with i < j, let
wij © M; — M; be an A-homomorphism defined by a/i* v at®/j* where t € S is an element
satisfying j = it. First of all, it is well-defined, since for any two tq,to satisfying j = it; = ito,
ik (j*ath — j*ath) = j%a((it1)* — (it2)*) = j*a(j* — j*) implies at¥/j* = ath/j*. Then, it satisfies
that
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i. 4 is identity mapping by letting ¢t = 1.
il. pir = pjk o pi; whenever ¢ < j < k. To see this, let ¢,¢ € S such that j = it, kK = ¢j. Then,

pir(a/i") = a(qg"t") /K" = pyi(at™ [3") = pji © pig(a/i").

Thus, M; with homomorphisms p;; form a direct system M = (M;, p;;) over the directed set .S, by
following Exercise 2.14. Hence, it admits a direct limit li lg My by construction of Exercise 2.14.
Let ps : Mg — hg cs My be restriction of projection map @565 My — hm M Notes that if
0 € 5, then 0 is the maximal element, since for any s € S, 0s =0 unphes S < 0 Thus, the direct
limit is zero, since for any element us(a/s ) (by Exercise 2.15), jus(ws) = po(a0¥/s*) = po(O/l) =0
since ring homomorphism sends 0 to 0.
Now take a map a, : My — S~'M by a/s* + a/s. It is well-defined homomorphism since if
a/s* = a’/s?in M, then 3s' such that sta’s?—stas? = 0 thus a/s'T? = as'T9. Thus, a/s* = a’/s?
in ST'M since s* € S. Also, for i < j there exists u € S such that ui =3, ajopj(a)i®) =
aj(auf /5%) = au/j* and au®/j* = a;(a/i*) in STIM since 1(aui* — aj*) = 0. Hence it
satisfies o; = a; o p;; whenever ¢ < j. By Exercise 2.16, there exists a unique homomorphism
«: h_n;seSMs — S~ M such that o; = a0 p; for all i € I.
Now we want to show that « is isomorphism. By Exercise 2.15, every element of hQMS can
be denoted by pi(a/i®). Then, to see a is injective, suppose « o j;(a/i*) = 0. This implies
a;(a/i*) = 0, hence a/i* = 0 in S™'M. Thus 3t € S such that ta = 0. Thus, let ¢ = ti. Then
q > i, thus pi(a/i*) = pg o pig(a/i®) = pg(att/q*) = 1y (0/¢*) = 0. Also, this map is surjective,
since for any a/s € STIM, a o ps(a/s) = as(a/s) = a/s. Done.

O

Let {x;}"_; be a set generating M. Then, Az; = A/a; for some proper ideal a; (by taking a
canonical map A — Ax;). Thus, from M =" | Axz;,

SUPP(M)\:,/USUPP(Axi) = | Supp(4/a;) Vi) = V() a)

iv) Prop 3.9 i) =1 Exercise 1.15 iv) =1

Now if a € A annihilates M, then the map A — Ax; sends a to 0, hence a € [, a;. Conversely,

any elements in (i, a; goes zero when we multiply it with any generators. Thus this set is in

Ann(M). This implies that ()}, a; = Ann(M).

Suppose that p is not in Supp(M @ N). Then, (M ® N), = 0, which implies M, ® N, = 0 by
A

Proposition 3.7. By Exercise 2.3, M, = 0 or N, = 0, thus p & Supp(M) N Supp(N). Conversely,

if p & Supp(M) N Supp(N), then either M, or N, is zero. By Exercise 2.3, M, ® N, = 0. Hence

by Propositon 3.7, (M ® N), = 0, which implies p ¢ Supp(M ® N). Now take contrapositive
what we get.

M/aM = A/a@ M by Execise 2.2, so
A

Supp(M/aM) \:,/Supp(A/a)ﬂSupp(M) = V(a)NV (Ann(M)) = V(aUAnn(M)).

vi) by v) by Exercise 1.15 iii)

Notes that every ideal containing a U Ann(M) contains a + Ann(M) since it is an ideal generated
by a U Ann(M). Hence, we get the desired result.

As a B-module, (BQ M), = B; Q(BQ M) by Proposition 3.5. By Exercise 2.15, with the
A B A
property that B is a bimodule, we know that B; Q(B @ M) = (By @ B) Q M and by Proposition
B A B A
5, (Bq @ B) = By, hence
B

(B M)q = By QM.
A A
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21.

Also, notes that By has a Ap-module structure such that for a/s € A,, define (a/s).(b/t) =
(a)/f(s)-b/t. This is well-defined action since if a/s = a’/s’, then 3t € S such that ts'a = tsd/,
hence f(a)/f(s) = f(a’)/f(s’) since f(t) € A — q because p is preimage of q. Hence, we have

(BQRM)q = By QRM = (B (XR) Ap) Q) M
A A Ay A
And as we already know, A, is a bimodule over A, and A, thus

(B M)q = (BgXR) Ap) Q) M = By R)(Ap X M) = By X) M,
A A, A Ay A Ay

by Exercise 2.15 and Proposition 3.5.
Now suppose that p ¢ Supp(M). Then, M, = 0, this implies (BQ M)y = B, Q@ M, = 0 by
A A,

Exercise 2.3. Hence, q € Supp(M3p) .
Conversely, suppose q ¢ Supp(Mp). Then 0 = (B ®M)q =~ By ®Mp Let x1,--- ,x, be gener-

ators of M over A. Then (1/1) ® (z;/1) = 0. By Corollary 2.13 thorc exists a finitely generated
Ap-submodule NV; of By and M; of Mysuch that V; ® M; is a finitely generated submodule such

that (1/1) ® (x;/1) = 0. Now notes that N; ®Mp is also a finite Ap-submodule of Bq(g,M,J

containing > | N; ®M2, since it is generated by generators of N; and its tensor product Wlth
p
{z;}s, which are finite.

Now > 1 (N; @ M,) is a finite Ay-submodule such that (1/1) ® (x;/1) = 0 for all x;. Since
A

the sum is finite, so it is actually a direct sum, hence using Proposition 2.14 we can rewrite it
as N @ M, where N = Y | N;, which is still finitely generated. Then, N @ M, = 0 since
M

Ap
(1/1)® (z/1) = 0 for all x € M, since each z is generated by (1/1)®xz;/1. Thus N =0o0r M, =0
by Exercise 2.3. Since N has 1/1, it is nonzero, this implies M, = 0.

Let p = q¢ for some q. Then, f*(q) = f~'(q) = p. Hence if LHS true then f* is surjective.
Conversely, if f* is surjective, for any prime ideal p € Spec(A), p = f*(q) = q°, done.

Suppose the LHS. Let q = p¢. Then, f*(q) = p¢© D p. Thus, suppose f*(q) = f*(q’). Then,
pee = (p)ec, where q' = (p)¢, this implies p¢°® = (p’)e“¢, which implies p¢ = (p’)¢ by Proposition
1.17, which implies q = ¢'.

Converse is not true. Let B = A[z]/(2?) for any ring A. Then, 7 : B — A by f + f(0) has
kernel (x). Thus, for any prime ideal p of A, its inverse is a prime ideal of B containing z. And
for any prime ideal in B, it contains 0 = 22, thus z is in the prime ideal. Thus all prime ideals
in B are contraction of A. Now let ¢ : A — B canonical injection. Then p¢ along ¢ is not a
prime ideal, since p¢ = (p) = pA[z]/(2?) = {a + bz € B : a,b € p}, thus z & p°. (If it is in,
then p contains 1, contradiction.) Also, 7=1(p) contains p¢. Hence no extended ideals are prime,
and no prime ideal 77 1(p) is extended. However, ¢ induces a bijection Spec(B) — Spec(A) since

¢~ (m(p) = (o d) H(p) = 15" (») = p.

By Proposition 3.11, we have a one-to-one correspondence between Spec(S~!'A) and S™'X :=
{p € Spec(4) : pN S = 0} given by ¢* (contraction) and extension of prime ideal. In particular,

by 3.11 ii), if p € S71X,
pe=Jn:s)=p

ses

where the last equality comes from the observation that s & p, thus as € p implies a € p for all
a € A. This implies (p : s) = p for all s € S. (Or just use the one-to-one correspondence to see
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that 3q € Y such that q° = p, hence p© = q°°“ = q° = p.) By the same argument, if q € Y, then
q = p® by 1-1 correspondence, thus

qCE :pece :pe — q

Now let X = Spec(A),Y = Spec(S~'A), then for any f € S, we want to show that ¢*~!(Xy) =
Y,(f)- Suppose that p € Yy(s). Then ¢(f) & p, thus f & p¢ = ¢*(p). Hence ¢*(p) € X;. Thus
p € »*1(Xy). Thus by Exercise 1.21 i), ¢* is continuous.

Also, to show homeomorphism, we want to show that ¢* is also closed map. Let V' (a) be closed
set in Y for some ideal a. Then,

¢"(V(a) ={p*:peV(@}={aeS7'X:q2¢7(0)} =V(¢~ (@) NST'X.

Thus, if a is proper, then ¢~!(a) is also a proper ideal, thus V (¢~ 1(a)) N S~1X is closed in S~1X
as subspace topology. This shows that ¢ is closed map, thus homeomorphism.

Now for the last statement, let S = {1, f, f,--- }. Then, if p € X, then f & p, thus SNp = 0 since
p is prime, hence p € S~'X by one-to-one correspondence from Proposition 3.11. Conversely, if
p € S7'X, then pN S = 0, this implies f & p, hence p € Xy. This shows that Im(Spec(Ay) =
S71X = Xf.

What we want to show is that below diagram commutes,

s-ly — 9, g-1x

) e
—1 px

Spec(S~!B) LA N Spec(S~tA)
where S~1Y is image of Spec(S~!B) in Spec(B) and S~1X is image of Spec(S~1A) in Spec(A),
and ¢* = f*|g-1y., and S71f : ST'A — S7B by a/s — f(a)/f(s). Homeomorphism is clear by
above exercise. So it suffices to show that it commutes.
Let p € S7'Y. Then, g*(p) = f~1(p). Also, SN f~1(p) = 0 otherwise f(s) € p, contradicting
definition of S™'Y. Hence, 7% ' o g*(p) is a prime ideal f~!(p)¢, which is an ideal generated by
{a/1:a € f~1(p)}. Conversely, 1ocahzatlon on B by f(S) maps p into {b/1 : b € p}, so an ideal
generated by extension of this set is 74 (p). Now S~ f*or* "' (p) := {a/s : f(a)/f(s) € 7% ' (p)}.
Now we claim that those are equal.
Let a/s € S~ f*om’ ! (p), Then, f(a)/f(s) € 7% (p). Thus, f(a) € p, otherwise, since f(s) & p
for any s € S, f(a)/f(s) has no representation such that numerator is in p. Hence, a € f~1(p),
thus a/s = a/1-1/sisin f~1(p)¢. Conversely, if a/s € f~1(p)¢, then a/s = > b;/c;-a;/1 for some
bi/c; € STtAand a; € f~1(p), a € f~1(p) since every term of numerator in forms of the reduction
of common denominators are in f~1(p). Hence, f(a) € p, therefore f(a)/f(s) = f(a)/1-1/f(s) €

7% (p), an extension of p. This shows that a/s € S™' f* o 7% *(p). Hence

STHfromiT p) = fH ()"
Hence the above diagram commutes.

Let ¢ € V(b). Then, a C a® = b C q°
7a:A— Ala,mg: B — B/b, then fomu(a
Hence, foma = mpo f. This induces (ma)*o

(q). This implies f*(V (b)) C V(a). If we let
f(@+a)=f(a) + b =mpo f(a) for any a € A.

a)
f* = f*on}, which shows the below map commutes.

[

Spec(B/b) —— Spec(A/a)

o

TR U

vie) — 5 v(a)

Since each 7%, 7} are homeomorphism, so we can say that f* is restriction of f* on V(b).
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22.

23.

(d) If we use result of ii) and iii), then we have a commutative diagram

Spec(Ap/pAy) <f77* Spec(By/pBy)
Spec(Ay) G Spec(By)

| |

Spec(A) — Spec(B)

By iii), Spec(Ap/pAy) — Spec(A,) is injective map, and by ii) Spec(A,) — Spec(A) is injective
map. (Similarly for the right two maps.) Notes that k(p) = A,/pA, by definition. Thus,
Spec(A,/pA,) is singleton, hence its image on Spec(Ay) is V(pAp) by iii), which is {pA,} since it
is the maximal ideal in A,,. Also, image of V(pA,) in Spec(A) is {q € S~! Spec(A4) : q 2 p} = {p},
since if g € S7!Spec(A), then by definition qN S = @, thus ¢ C A — S = q. Thus, if we send
Spec(B,/pB,) along f;, then it is goes zero map, and its image on Spec(A) is {p}, which is equal
to sending it using Spec(By/pBy) — Spec(By) — Spec(B) — Spec(A). Thus, f*~1(p) contains
image of Spec(By/pBy). Also, if g € f*~!(p), then f*(q) = p, thus f~!(q) = p implies f(p) C g,
hence q N f(S) = 0. Hence, q is in the image of Spec(B,,) where By, = f(S)™'B. Let (q), be such
a preimage of ¢. Since the map is injective, it is actually the preimage of q. And, since f(p) C q,
qp contains f(p)B,, thus q, € V(f(p)B,), and by iii), q, is image of an element in Spec(B,/pBy).
This implies that f*~!(p) = Spec(B,/pB,) as a subspace of Spec(B), thus the above injections
homeomorphic to its image induces natural homeomorphism.

Now to see that Spec(B,/pB,) = Spec(k(p) @ B), let T be image of S along the map A — A/p.
A
Then, since S = A\p, T'= (A/p)\{0}. Thus, according to Exercise 3.4, T~1(A/p) =2 S~1(A/p) =

(A/p)p
QB (/) @B = n,@B = T UNRB
A A Prop 3.4 iii) A Exercise 3.4 A
o~ -1 ~ —1
= T An@Am@B = T AN Q@UARB)
Prop 3.5 Alp A Exercise 2.15 A/P A
= -1 o -1 ~ -1
& TN QBRBE &, TN(B/pB) &, ST(B/pB)
Exercise 2.2 Alp Prop 3.5 Exercise 3.4
= Be/vBy.
Prop 3.4 iii)

This shows equality.

Notes that q € Spec(A,) as a homeomorphic subspace of Spec(A) if and only if q is contained in p if
and only if NS =0 if and only if g € (g X. Hence Spec(Ap) = ;g Xy Thus it suffices to show
that ﬂfes X7y is the intersection of all open neighborhoods of p.

Also observe that If U contains p, then since {Xf}rca forms a base of Zariski topology by Exercise
1.17, U is union of Xs. Hence, at least one of X in the union contains p, this implies that 3f € S such
that X is in a union representation of U. Thus, U D) fes X thus intersectionof all neighborhoods
of p contains nfe g Xjy. Conversely, if q € ﬂfe g Xy, then it is contained in any open neighborhoood
of p since U contain at least one of X with f € S as its subset. Thus, q is in the intersection of all
open neighborhood of p. Thus, the intersection is ﬂfes Xy.

(a) To show this, suppose U = Xy = X,. Then, it suffices to show that Ay = A, as a ring. Notes
that Xy = X, gives us r((f)) = r((g)) by Exercise 1.17 iv). Hence, f* = hg and g™ = h'f
for some h,h' € A, n,m € N. Now let ¢y : A — Af, ¢y : A — Ay. Then, ¢¢(g) = g/1 is
invertible since h/f" - g/1 = 1/1. Hence, for given S, = {1,9,¢%,--- }, ¢¢(s) is unit in A; for all
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s € Sg. Thus by Proposition 3.1. (universal property), there exists a unique ring homormophism
vgr + Ay — Ay such that ¢y = 145 0 ¢4. By the same argument, we can get the unique ring
homomorphism¢, : Ay — Ay such that ¢g =14 0 ¢y. We can draw a commutative diagram

Aw, ~

Ay 2 Ay
! gy

From this diagram, we can get

Gr =Ypg0Ugr 0y
Then, for any s € Sy, ¥yg 045 0 dr(s) = ¢7(s) is unit. Hence by Proposition 3.1., there exists a
unique homomorphism ¢ : Ay — A such that 14 0 gr 0 ¢f = s o ¢y. Thus, by uniqueness,
o =1rgotyr. Also, since Py 0gp0dy = ¢y =14, 0 ¢y, by uniqueness of 9y, oy =14,. This
induces that ¢y5 095 = 14,. By the same argument on the other side, ¢g¢ 0 9sg = 14,. Thus
Ag = Af.
Let U = Xy, U' = X, such that U’ C U. Then, V(f)¢ C V(g)¢ implies V(f) 2 V(g), thus
r((f)) 2r((g)). Hence, g € r((f)), therefore In € N and u € A such that ¢" = uf.
Define p: A(U) — A(U') by a/f™ ~ au™/g™". To see p is well-defined, let b/f* = a/f™. Then
3f4 such that f(af* —bf™). Hence, for given p(b/f*) = bu*/g"* and p(a/f™) = au™/g"™,

fq (aumgnk buk: nm) _ fq (aumukfk _ bukumfm) _ um—i—qu(afk: _ bfm) =0
Thus p is well-defined. Now to see p depends only on U and U’, Let U = Xy = Xy, U' = Xy =

Xy . Then, there exists n,n’ € N and u, v’ € A such that ¢g" = uf, (g’)”' = u'f. Hence, we can
define p(a/f™) = au™ /g™ and p'(a/f™) = a(u')™ /¢™" . So we have a diagram

Ay —2— 4,

Iz’f’f’l lwgg'

Af/ L> Ag/

where 91,144 are isomorphism induced by the universal property in the above construction
in i). It suffices to show that this diagram commutes. To see this, first, we show that actually,
¢g = po ¢s. To see this, notes that ¢,(f) = f/1 is unit since f - u/g"™ = 1. Thus, there exists a
unique homomorphism p” such that ¢, = po @y, by Proposition 3.1. Now notes that ¢4(a) = a/1,
and po ¢s(a) = p(a/1) = a/1 by definition, thus by uniqueness, p = p”. Likewise, we can show
that p’ is unique homomorphism satisfying ¢4 = p’ o ¢y. Thus, below diagram commutes for
each triangle. It suffices to show that outer square commutes.

Ap——2 4,

™~

Vyg Ygg!

/\

Af/—}A

First of all,

g © o Gf =1hgy © g =g and p'othspogp=pody =y
by commuting triangle. And each map sends ¢’ to unit, thus there exists unique map ¢ : Ay — Ay
such that ¢gg 0pods = popy and p'othyp 0y = @ody . Since each righthandside of equations
are equal to ¢y, so p = La,, and also

1/199/ opquf :p'oq/)ff/ ody.
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Now we claim that ¢ is epimorphism. (Notes that epimorphism is not the same as surjection in
a category of ring.) Hence it is right cancelable, which implies

heg 0 p=p otyp
Claim XX. Canonical map of localization and quotients are epimorphism.

Proof. Let f: A — A/a be canonical projection. Then, suppose that g,h : A/a — B such that
go f=ho f. Then,

g(@) =go f(a) =ho f(a) = h(a)
for any @ € A/a. (Actually this is natural since f is surjection.)

Also, let f : A — S~!A be canonical injection. Let g,h : S™'A — B such that go f = ho f.
Then,

gla/s) = gla)g(1/s) = g(a) - g(s)™" = h(a) - h(s)~" = h(a/s).
Where g(s)~! = h(s)~! comes from the fact that g(s/1) = go f(s) = ho f(s) = h(s/1) and inverse

of an element is unique. O

(c) If U = U’, then we can make p : A(U) - A(U’) and v : A(U") — A(U) satisfying ¢y = v o ¢,
and ¢, = po ¢y. (That’s what we showed in ii).) Also we showed that ¢4, ¢; are only depends
on U and U’ respectively, thus U = U’ induces ¢, = ¢¢. Since they are epimorphism, so right
cancellable, thus p = 14 = 14w = v.

(d) By ii), we can construct the diagram
/i\

A(U) AU

Pu V
p/ A7 p//
Py
AU
commuting each triangle. Now notes that
p'op ody=p" oy =y and po gy = du»
Hence

p'opody=pody

and since ¢y is epimorphism we showed in ii), it is right cancellable, thus
plop =p

as desired.

(e) First of all , need to make I, = {U : U is a basic open set containing x} be a directed set. Define
Xy < X,if Xy C Xy. Then, it is directed set since for any Xy, X,, then r((fg)) C r((f))Nr((g)),
hence V(fg) D V(f)NV(g) 2 V(f),V(g) implies Xty C X, X4, which implies X ;g > X5, X,.
From this relation, we can have ps, : A(Xy) - A(Xy) if X5 < X, ie., Xy DO X, using con-
struction of ii). By iii), pyy = 14, and by iv) pix = pjr © pi; whenever X; < X; < Xj. Thus,
M = (A(Xy), prq) over the directed set I, form a direct system. Hence using construction of
Exercise 2.14, we have @Uelw A(U).

Now we want to show that li_I>mU€Iz A(U) = Ay, where p = z as a prime ideal. To see this, let

¢p : A — A, be a canonical localization map. Then, for fixed f € S = A\ p, ¢p(f) is unit. Hence,
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by universal property of localization over Sy = {1, f, f%,--- }, we have a map ¢ : Ay — A, such
that

prods =y
where ¢ : A — Ay is canonical localization map. Now we need to show that p¢g 0 9, = @y for
Xy < X,. We know that triangles in below diagrams commutes, where top triangle commutes

from iv).
Pfg

/_\
Ay

AQ
w V
wf A
. Pg
AP

Thus, we can get

Pg 0 P1g 0G5 = bp =py oy
Since ¢y is localization map, thus epimorphism. This implies. ¢4 0 prq = ¢¢. Hence by Exercise
2.16, there exists a unique homomorphism ¢ : @Uelw A(U) — A, such that ¢ = @ o py where
pr:Ap— ligerIz A(U) is a canonical injection of direct limit.
Now we need to show that ¢ is a module isomorphism. To see it is injective, by Exercise 2.15,
take an arbitrary element b € limy, - A(U) and its representation pf(a/f*) such that ¢(b) = 0.
Then,

0=p(b) =popsla/f*) = psla/f*).

Notes that ¢¢(a/f") = a/f™. (You can check that this construction is well-defined map and
satisfying property of ¢.) Hence, a/f* = 0/1 in Ay, there exists s € S such that sa = 0. Then,

pr(a/f™) = psyoprsr(a/f™). And as we showed in ii) and iv), pssr(a/f™) = as™/(sf)" = 0/1.

Thus,

b=ps(a/f*) = psjoprspla/f*) = pss(0/1) = 0.
Hence ¢ is injective.
To see ¢ is surjective, then pick a/s € Ap. Then, a/s € Ay, thus ps(a/s) is in MUEQ A(U),
therefore @ o ps(a/s) = ¢ps(a/s) = a/s, done.
It is not the exercise in 3.23, but we can extend this construction on any open sets in X = Spec(A).
If U is an open set in X then by definition of base of topology, U is union of Xys. Say U = |J;; X,
Then, let S; = {1, fi, f?,--- }, and S; be saturation of S;. By Exercise 3.7 ii), S; = 4\ UpeXfi p.
To see this, if a prime ideal p doesn’t meet S;, then f ¢ p, thus p € Xy. Conversely, if p € Xy, then
f &p. Thus f* & p, otherwise f € p by prime property, contradiction. Now just let X; := X,.

Let Sy = ;e IE. Then Sy is saturated multiplicatively closed set since 1 € Sy and each S;s are
saturated. Thus,

so=(11A\ U re|=av U »=a\Up»
iel peEXy, pEXy, Viel peU

Now define A(U) := Sl}lA. For any open subset V of U, the above construction shows that
Sy 2 Sy, thus by Exercise 3.8, we have pyy : A(U) = A(V). If U =V then pyy is identity map
of A(U) by construction in Exercise 3.8. And for any U DV 2O W,

A(U) Pow A(W)
&v PVV
A(V)
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24.

commutes since those maps are just identifying map. For example, a/s € A(U) can be identified
as an elements in A(W) by pyw or can be identified as an elements in A(V) first then in A(WW)
lasts, and those are the same. Hence this construction satisfies iii) and iv). Also, this construction
is consistent with construction in Exercise 3.23 for the basic open sets. Hence, assignments of
ring A(U) for all open sets U of X and the restriction homomorphism pyy satisfying condition
iii) and iv) are called a presheaf of rings on the open sets. Also the stalk of this presheaf at x € X
is still A, since for any py(a/s), U is open, then U contains a basic open sets, say Xy, thus
pu(a/s) = propu r(a/s). Hence any elements in the direct limit of open sets can be identified as
an elements of direct limit of basic open sets. This implies that their direct limits are the same.

In case of U = X, then Sy = A\ Upegpeca) P- We claim that Sy is a set of all units of A. Notes that
if s € Sy is not a unit, then (s) is proper ideal. Hence it is contained in a maximal ideal, which is in
Spec(A4), thus s € Sy, contradiction. Hence Slle >~ A, since for any a/s € S[}l, a/s=s"ta/l.

Since each U;s are basic open sets, U; = Xy, for some f; € A. Also, by Exercise 1.17 v), X is
quasi-compact, thus take finite subcover from I, saying that Uy, --- , U, covers X. Then,

b
I
S
[
=

V() =X \[V(f)-

©
Il
=
.
Il
-

By Exericse 1.15 iii) V(f;) = V(3.(fi)) and by Exercise 1.15 1), V(3 (f;)) = @ implies > (f;) = (1).
Now notes that (f;) and 3_; ,;(f;) are coprime, thus their radical is coprime. Hence from the fact that
(f") S r((fi)) for any m € N, (f{*) + >_(fI") are coprime since their radical is (f;) and » (f;) and
use Proposition 1.16. Hence, for any m € N, we have representation

i=1

Now we need to show existence of s. Suppose s; € Ay, is given by s; = a;/f]"* for each 7. Then
take m = maxm,;. Then s; = a;f" "/ f". Denotes a;f;" """ = b;, so s; = b;/f". Now notes that
X5, N Xy, = Xy,p, by Exercise 1.171). If X5, = 0, then f;f; is nilpotent, thus Ay, = 0 since the
multiplicative set generated by f;f; contains 0, by example 2 in [3|[p.38]. In that case, they agrees
trivially. So assume that Xy, # 0. Then, py, .5, (s:) = bif*/fI" f7* and py; 1.5, (s5) = bj fI/ f77 f]
For economy of notation, let g; = f/*. Then,

Pt fif; (8i) = big;i/9ig; and py; 1.1,(s5) = bjgi/ gigj-

So they agrees if and only if 3m;; € N such that

)mij-i-l )mij+1

(9i9; 950 = (9:9; gibj.

(Notes that if we can get power of f; f;, then multiply more so that we can get power of g;g; form.)
Now let p = max(; j)e[n]x[n] Mi; + 1. Then, for any i, j € [n], we can get always

(9:95)P 950 = (9:9;)" 9ib;- (1)

Then if s exists, then s/1 = b;/g; in Ay,. This implies that if such s exists, there exists g¥ such that
gf“s = gkb;. Also, by multiplying g; arbitrarily many, we can assume that k& > p for any i. And from
the fact that 1 can be linear sum of f! for any [ € N, and g; = f™, so we can say that 1 = Z;L:1 cjglm/7
where m’ > p + 1. Hence

n n n

n
4 +1\ k— —p—1 +1\ k— '—p—1 k [
gibi =Y eibighgl = ci(biglgt gl Pl TP =0 eilbighgt gl P TP = gf Y D esbiglt
Jj=1 j=1 Eq. [[J=1 Jj=1

Thus, let s = 1", ¢ibigf where ¢; comes from above decomposition of 1 = 37", ¢;g7 *1. Then,

n
pp. _ pt1 p _ pt+l
9ibi = 9 chbjgj_gi S
Jj=1

o1



where first equality comes from the fact that the above equation holds when k > p, m’ > p+ 1. Hence,
in Ay,

s/1=gi " s/gi™ = gibi/gi ™ = bi/g;
as desired. Thus px v, (s) = s;.

Now, let Uy be an open set in the cover which is not U; for i € [n]. Then, let V; = Uy N U;. Thus, by
assumption, for any i € [n],

puvi(sk) = puivi(s5) = pxvi(s) = (pun.vi © px,u, ().
Exercise 3.23 iv)

This shows that py, v, (sk — px,v,(s)) = 0 for any i € [n]. Notes that since {Ui};e[n) covers X, thus
V; covers Uy. If we shows the uniqueness of s, then by applying above existence argument and this
uniqueness argument on U, = Spec(Ay) with finite cover V;s, we can conclude that si = px v, (s).
Thus desired s exists.

Therefore, we need to show that if such s exists, then it is unique. If s,s’ are both global section
satisfying given conditions, then px y,(s) = s; = px,v,(s) for any i € [n]. This implies that px u, (s —
§)=0. Let t = s — &'. Then t € ker(px.p,) for all i € [n], thus t/1 = 0/1 implies ¢tf/* = 0 for some
l; € N. Take | = max;c[)l;- Then, we have decomposition of 1 by fls, thus

t=t-1=) cifit=>» 0=0.

This shows that s = s’. Thus if such s exists globally, then it is unique.

In summary, what we did is that 1) such s exists in any finite subscover, 2) if global section exists,
then it is unique, 3) for any basic open set X} not in subcover, we can make a finite subcover of Xj
using the finite subcover for X, and s, and px y, (s) are two global section of Spec(Ay), so applying
2) on Spec(Ay) we can get s = px .y, (s). Thus such s exists globally. 4) Now apply 2) to get such s
is unique.

25. Let p € X and k = k(p) be the residue field at p. By Exercise 21 iv),
"~ (p) = Spec((BQQ) C) Q) k)
A A
“p) = Spec(C@ k)
A
F*H(p) = Spec(B Q) k)
A

And notes that

(BRC)Rk
A A

%
®
Q
9
{n
%
¢
X
a

. BRURQHNRC)

Exercise 2.15 A A Prop 2.14 i) A A Prop 2.14 i A k A

v)
& BRUKQKRO) = B®k(?k®0).

Exercise 2.15 A k A Exercise 2.15 A

Hence,

peImh* < Spec( B®k QR ) #£0 = (BRK) QR k) C) #0
A

k A A k

— (B®k #0 and (k@) C) # 0 <= Spec(B(X) k) # 0 and Spec(k (X)) # 0

Exercise 2.3 A A A A
= ¢ (p) #0and f7H(p) #0 <= p € Im(f*) NIm(g").
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27.

Thus,
F(Y)Ng*(Z) = Im(f*) N Im(g") = Imh* = h*(D).

Notes that

Claim XXI. A commutative ring with unity has zero spectrum if and only if it is zero ring.
Proof. Every nonzero ring has a maximal ideal by theorem 1.3., which is prime. O

However if a ring doesn’t have 1, then it may happen; think 2Z/8Z = {0,2,4,6} mod 8. Then
(4) = {0,4} is not a prime since 2-6 = 12 = 4 mod 8. Also (2) = (6) = {0,2,4,6} = 2Z/8Z, thus there

is no prime ideal.

Let p € Spec(A). Then, f*~!(p) = Spec(B @ k(p)) by Exercise 3.21 iv). By Exercise 2.20,
A

B - ) @6 = 5, @)
Exercise 2.20 ¢ A
By Exericise 2.21, li_I)na(Ba R k(p) = 0if and only if B, @ k(p) = 0 for some « if and only if fx=1(p) = 0)
A A
for some a by the above claim. Also the above claim implies that lim (Bo @ E(p) = 0 if and only if
« A

Spect(lim, (Bo @ k(y)) =

Hence, p € Im f* if and only if f*~1(p) # 0, if and only if a, £~ 1(p) # 0 from the contrapositive of
the result of above paragraph, which is equivalent to saying that p € (), Im f7.

(a) Let I be an index set of all B,. Then let P be collection of all finite subsets of I. We showed
that P is directed set. Thus if we let By be tensor products of all elements in {B; : i € J}, then
@JGP is defined well, by Exercise 2.23.

Then by Exercise 3.26,
f*(Spec(B)) = () £3(Spec(By)).

JepP

Since each Bj is a finite tensor produtcs, so applying Exercise 3.25 finitely we can get

f*(Spec(B,)) = () fa(Spec(Ba)).

aedJ
Hence,
f*(Spec(B)) = () £3£5(Spec(By)) = ) () fa(Spec(Ba)) = () fi(Spec(Ba)).
JeP JeP aeJ acl

(b) By Exercise 1.22, Spec(B) is disjoint union of Spec(B,) as an embedded clopen set. Thus each
prime ideal of Spec(B) can be identified as (3_,_.5 Ba) @ pg for some ppera € Spec(Bg). Hence,

(O Ba)@ps) =F (D Ba)®ps) ={a € A: fz(a) € ps} = fi(ps)-
a#f a#B

Since 8 was arbitrarily chosen, an from the disjoint union,

F*(Spec(B Uf {(D>_ Ba) @pps : pp € Spec(Bg)}) = | J £5(Spec(By),
a#f B

as desired.
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30.

(c) Let 7 := {Cy : f : A — B for any ring B} where C; := f*(Spec(B)). Then, intersection of Cs

are also closed, since we can construct tensor algebra whose f*(Spec(B)) is the given intersection,
by 1). Similarly, for any finite union of C, we can construct a direct product whose f*(Spec(B))
is the given finite union. Thus, it suffices to show that ) and X = Spec(A) is in 7. Since Cy, = X
and C4_,0 = (), we are done.
To see that it is finer than Zariski topology, recall that V'(a) & Spec(A/a) by Exercise 1.21 with a
surjective ring homomorphism f : A — A/a, whose kernel is a. Thus V(a) = f*(Spec(4/a)) € 7.
Notes that it is not always finer; for example, if A has only one prime ideal, then Spec(A) = {e},
thus any image of f* is either Spec(A) or ().

(d) One of the version of definition of quasi compactness is that every collection of closed sets of X
with empty intersection has some finite subsets of the collection whose intersection is empty.
Suppose that {Cy : f: A — By} be a subset of 7 whose intersection is empty. And by ii), their
intersection is corresponding to tensor algebras of By, say B. Let g : A — B. Then,

0 = g*(Spec(B)).

This implies that Spec(B) = ), thus by above claim, B = 0. Then, by Exercise 2.21, there exists
Bj; where J is finite subsets of By, such that B; = 0. Thus,

0= f*(Bs) = () fi(Spec(Ba))

acJ
by i).

(a) X, is set of prime ideals not meeting S = {1,9,¢% ---}. Hence, by Proposition 3.11, X, =
J*(Spec(S~1A)). Hence it is closed. It is open since X, = V(g)¢, where V(g) is still closed in this
topology.

(b) Let p # q. Then, there exists f € p\ q. Thus, X; contains q but not p. Since Xy is clopen, its
complement is clopen, which implies X§ contains p but not q. Thus there is two disjoint open
sets separating p and q.

(c) Since this map is identity, it is bijective. Also, by definition of subbase, X/ is generated by
X, and X \ X, thus any closed sets in X is finite union of arbitrary intersection of these X,
and X \ X s. By i), these subbase is still clopen in C, the constructible topology. Thus every
closed sets in X¢- is still finite union of arbitrary intersection of closed sets, thus closed in Xc¢.
Hence it is continuous. Finally, we know that X is Hausdorff by ii), and X¢ is quasi compact
by Exercise 3.27 iv). And it is well-known that a continuous bijection from compact domain to
Hausdorff codomain is homeomorphism.

(d) Thus X¢ is compact Hausdorff by homeomorphism in iii). It suffices to see that it is totally
disconnects. As we can see in the proof of ii), for any p # q, there exists p € Xy and q € X \ X;.
Since both Xy and Xy are clopen, so they are disjoint. Since we choose q arbitrarily, only
connected component containing p is singleton {p}. Since p was chosen arbitrarily, done.

Any closed set in the constructible topology of Spec(B) can be denoted as g*(Spec(C)) for some ring
homomorphism ¢ : B — C. Thus,

F*(g"(Spec(C)) = (g o f)**"(Spec(C))

by Exercise 1.21 vi). Since go f : A — C'is also a ring homomorphism, so (g o f)**(Spec(C)) is closed
set in the constructible topology of Spec(A).

Let 1x : X¢ — X where X¢ is X with constructible topology and X is just with Zariski topology.
Since every closed set in Zariski topology is also closed in X¢, so 1x is continuous bijection. If
A/ is abolutely flat, then by Exercise 3.11 iv), X is Hausdorff, thus by the fact in topology stating
that a continuous bijection from compact domain to Hausdorff codomain is homeomorphism, 1y is
homeomorphism.

Conversely, if 1x is homeomorphism, then X is Hausdorff by Exercise 3.28 iv). Hence by Exercise
3.11, A/ is absolutely flat.
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4 Primary Decomposition

Y is an zsolated set of prime ideals belonging to a if it satisfies the following condition: if p’ is a prime ideal
belonging to a and p’ C p for some p € X, then p’ € 0.

Theorem 4.10 (2nd uniqueness theorem). Let a be a decomposable ideal, let a = (I, q; be a minimal
primary decomposition of a, and let {pi,,--- ,pi, } be an isolated set of prime ideals of a. Then, ¢;, N---q;,,
is independent of the decomposition.

Proof. Notes that any associate prime of a is uniquely determined by a, due to the 1st uniqueness theorem
(Theorem 4.5). Now let S = A —p;, U---Up,; . Thus, S(a) is also uniquely determined by a Now, suppose
that there is another minimal primary decomposition a = (), q;. Then, we can assume that py,--- , p,,/ meets
S, and the other associate primes over this decomposition doesn’t meet S. Then Proposition 4.9 shows that

Since S(a) is contraction of S~1a, thus already determined. This implies that
m m’
(i, = () ai-
j=1 j=1
Hence the intersection is independent of decomposition. O

Corollary T. he isolated primary components (i.e., the primary components q; corresponding to minimal
prime ideals p;) are uniquely determined by a.

Proof. Let ¥ = {p}, a minimal associate prime of a and apply theorem 4.8 O

Proposition 4.12x%, [4]. Let A be a ring, S a multiplicatively closed subset of A. Write ¢s: A — S71A a
canonical morphism. For any ideal a, let S(a) denote the contraction along ¢s of S~'a. The ideal S(a) is
called the saturation of a with respect to S.

1. Usegla:s)={x € A:3s€ S s.t. sz ca}=S(a)=a*Da.

5(0) = ker(¢s).

Let S, = A\ p for p a prime ideal of A. If q is p-primary, then Sq(q) = q.
Sp(0) is contained in every p-primary ideal of A.

If S1 C Sy are multiplicative set of A, then S1(a) C Sa(a).

S T e

If b is an ideal of A containing a, then S(a) C S(b).
Proof. For i), First equality is clear by definition. Second equality comes from the fact that
re{reA:IseSst. sx €a} < z/l=a/sforsomeaca,s€S < z/l€a® < x€a*.

The third equality comes from definition, and last inclusion comes from Proposition 1.17.

For ii), (0)¢ = (0). Hence (0)°° = {x € A: ¢g(x) = 0} = ker ¢g.

For iii), Use Proposition 4.9 with a = g, thus S doesn’t meet p implies S(a) = q.

For iv), for any = € S,(0), /1 = 0/1 implies sz = 0 for some s € S, thus sz = 0 € q for any p-primary
ideal q. Since s € p, x € q.

For v), if z € S1(a), then 3s € S; C Sy such that sz € a, thus 2 € Sz(a) by definition.

For vi),

aCb = a®°Cb° = a® Cb*°

since below claim. O
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Claim XXII. Both extension and contaction preserves order of inclusion.

Proof. In case of extension, it is clear since generators of b® contains generators of a®. In case of contraction,
it is also clear since it is just preimage. O

1.

Let a has a minimal primary decomposition a = (), ¢;. In p.52 [3|, minimal (isolated) primes of
a must be a subset of all minimal elements of {p;}?_, where p; = r(q;). Thus, a set of all minimal
associate primes of a is finite set, since the decomposition is finite.

In other hands, by Exercise 1.20 iv), the irreducible components of Spec(A/a) is the closed sets V (p)
where p is minimal primes of A/a. By Proposition 1.1, those are image of minimal prime ideal p
with respect to set of all prime ideals containing A. By Proposition 4.6, the set of all minimal prime
ideals containing a is the same as the set of all minimal associate primes of a, which is finite. Hence,
Spec(A/a) has also finitely many irreducible components.

. Suppose that a is decomposable. (Otherwise, this statement is vacuously true.) Then, a = (), g;.

Now the 1st uniqueness theorem states that for any minimal primary decomposition of a, say a =
koo ; . . . . n
(i_; 95, its associated primes of a are the same as associate primes given by ();_; q;. In other words,

{pitie, = {pitioy-

This implies £ = n, hence any minimal decomposition of a has the same number of primary components.
Thus,

n n n

r=r(1)=r((a) = () rla) = v

i=1 i=1 i=1
Thus, if there is embedded prime, say p; C pa, then I = ﬂ?ZQ p; is another minimal primary decom-
position consisting of n — 1 primary ideals, which contradicting the 1st uniqueness theorem.

Let q be a primary ideal of A. Then since A is absolutely flat, A/q is also absolutely flat by Exercise
2.28. By definition of primary ideal, every zero divisor of A/q is nilpotent. Also Exercise 2.28 states
that every non unit in A is a zero divisor. Hence, for any « € A/q, x is unit or nilpotent. By Exercise
1.10, A/q has only one prime ideal. Therefore, A/q is local ring. Then, by Exercise 2.28 stating that
local absolutely flat ring is field, A/q is field. Hence, q is maximal ideal.

First of all (2,t) is maximal, since f : Z[t] — Z/2Z by f(t) — f(0) mod 2 is surjective homomorphism
and (2,t) = ker f. However, g : Z[t] — Z/47Z by f(t) — f(0) mod 4, is surjective map and (4,t) = ker g.
Thus, Z[t]/(4,t) 2 Z/AZ, and Z/4Z = {0,1,2,3}. Notes that 1,3 are unit, and 2,0 are nilpotent and
zero divisors. Thus, (4,t) is primary. To see it is m-primary, 7(4,t) = (2,t). (Definitley, 2 € r(4,t),
thus 7(4,t) D (2,t) and (2,t) is maximal implies the other direction of inclusion.) Notes that (2,t)% =
(4,t2,2t) C (4,t) implies that (4,%) is not power of m.

2

First of all, a = (z2.22, 2y, yz). Since 2%, xz, 2y, yz € m?, a C p;Np2Nm?. Conversely, if f € p;NpaNmM?,

then since f € m2,
f=ax?®+by? + c2* + dey + exz + gyz

for some a,b,c,d,e,g € K[z,y, z]. Since f € p,, ¢ should divisible by z or y, thus we can rewrite it as
f=ax? +by? +daey + exz + gyz
Also, since f € py b should be divisible by x or z. Thus, we can rewrite it as
f =ax®+dey + exz + gyz
Thus f € a, this shows the equality. To see it is reduced, notes that

P1 me = (wzay27x27yzaxy)
p2 mm2 = (mQ,ZZ,mz,yz,xy)
p1Np2 = (7,y2)
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7.

are not the same as a. Now notes that p; and ps are contained in m. Hence m is embedded prime.
However, p; and ps doesn’t have inclusion relationship. Thus, those are two minimal associated primes
of a

From Exercise 1.16 i), every maximal ideal of C(X) is of forms m, = {f € C(X) : f(z) = 0} for some
xz € X. We claim that every primary ideal is contained in a unique maximal ideal. To see this, let
a € m; Nmy. Since X is Hausdorff, there exists disjoint open neighborhoods of = and y, say U, and
Uy. Since X is compact Hausdorff, Urysohn’s lemma implies that there exists a continuous function
fo fy : X = Rsuch that fy(z) =1, fo(X\Uz) =0and f,(X\Uy) =0, fy(y) = 1. Hence, fg =0 € a.
Since a is primary, f € a or g" € a. However, neither is in m, N'm, 2 a which implies a is not primary.

Now notes that X is infinite space, there are infinitely many maximal ideals, therefore there are
infinitely many minimal prime ideals. Now suppose that (0) is decomposable, say (0) = ();_, q;. Then,
by Proposition 4.6, {p;}"_; contains a set of minimal prime ideals belonging to (0), and which is the
same as a set of minimal elements of in the set of prime ideals containing (0), Since every prime ideal
contains (0), this implies that a set of all minimal prime ideals of C(X) is finite. Which contradicts
the fact that there are infinitely many minimal prime ideals.

(a) Notes that a[z] C a®, since any polynomial in a[z] is linear combination of elements in a. Con-
versely, any elements in a® can be denoted as Y., a;f; where a; € a and f; € A[z]. Since a; f; is
a polynomial whose coefficients are in a, thus Y., a; f; € a[z].

(b) Let ¢ : Alx] — A/p[z] by ax® — az’. Then, ker ¢ contains p[x] since every coefficient is mapped
into zero. Conversely, if f € ker ¢, then each coefficient of f should lie in p. Thus f € p[x]. Since
it is surjective morphism, A[z]/p[z] & A/p[z]. Since A/p is integral domain, so does A/p[z] by
Exercise 1.2 iii). (If f is zero divisor in A/p[z], then by Exercise 1.2 iii), there exists a € A/p such
that af = 0. If f has degree n, then its n-th coefficient a,, is nonzero, thus aa,, is also nonzero
since A/p has no zero divisor. Thus, af also has degree n. Thus af = 0 implies f = 0.) Hence
p[x] is prime ideal in A[z].

(c) By the same reasoning, we know that Alx]/qz] = A/q[z]. Thus to see that g[z] is primary, we
need to show that A/q[z] # 0 (which is already shown) and A/q[z] every zero divisor in A/q[z]
is nilpotent. Let f € A/q[x] be a zero divisor. By Exercise 1.2 iii), Ja # 0 € A such that af = 0.
This implies that a is a zero divisor of A/q since af = 0 implies aa,, = 0 where a,, is the leading
coefficient of f. Thus a and a,, are nilpotent in A/q. Similarly, if a; # 0 for i-th coefficient of f,
then aa; = 0 implies that a; are nilpotent in A/q. Thus, all coefficients of f are nilpotent. By
Exercise 1.2 ii), f is nilpotent. This shows that q[z] is primary ideal. Now it suffices to show that
r(q[z]) = plz]. To see this, let f = Y7 | a;a* € p[z]. Then, for each a;, In; such that a' € q.
Thus, f2i=1 11 consists of all terms with a form

Z?:lni—’—l - ki 320 1 Ky

Jj=1

By pigeonhole principle, there exists at least one k; which is greater than n;. Thus the coefficient
is in qq, thus p[z] C r(q[z]). Conversely, suppose f € r(q[z]). If f is of degree 0, then f € p C plx].
Suppose it holds for degree p. Then, if f is of degree p + 1, then from f™ € g[z] for some n,
(ap41)™ € q, thus apr1 € r(q) = p, and ap 2P € r(q[z]). Hence, f — apr12P™! € r(q). By
inductive hypothesis, f — a,12PT1 € p[z]. Since a,112P! € plz], so does f. Done.

(d) First of all, to see a[z] = (/_, qi[z], let f € a[z]. It is equivalent to say that all coefficients of f
is in (], q;- This is equivalent to say that f € q;[z] for all 7, done.
By iii), a[z] = (i, g;[z] is primary decomposition. To see it is minimal, delete g;[z]. Then,
Niv; qilz] = (ﬂ?# qi) [z] by the same reasoning as we did for previous paragraph. Then,
ﬂ;;éj qi # a since O?:l q; is minimal primary decomposition. Thus, ();_, ¢;[z] is also minimal
primary decomposition.

(e) If there exists a prime ideal q such that a[z] C q C p[z], then its contraction gives us

aCqnACy
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with A N q prime, by p.9 [3]. By minimality of p, AN g = p. Thus, q contains p, hence ¢ contains
p¢ = p[z]. This shows g = p[z]. Hence, p[x] is minimal prime ideal of a[z].

8. A/p; 2 k[x;y1,- -+ ,x,) implies that p; is prime since polynomial ring over field is integral domain. To
see its power is primary, let g = pI* N k[xy, -+ ,x;] for fixed m € N, let p = p; N k[xy, -+, 2;].Then,
p is maximal in a similar way we’ve seen in Exercise 4.5 for (x,y, z). Also, p[zit1, -+ ,Zn] = p; since
p C p; implies p[z;41, - ,2,] Cpand forany f €p, f = Z;Zl fjx; for some f; € k[z1,--- ,x,], hence
all coefficients of f;z; as a polynomial of x;41,--- , @, over k[z1,--- , ;] contained in z;k[z1, -, z;],
hence is in px;y1,- -+, xn]. Also, q@iy1, -+ ,xn] = pI* by the similar way.

If g is p-primary, then q[z;41,- -, Zn] = pI™ iS plxiy1, - - ,@,] = p primary by applying Exercise 4.7
iii) n — 4 times. Thus it suffices to show that q is p-primary. Notes that ¢ = p™ in k[z1,- -+ ,2z;]. Thus,
it suffices to show that k[z1, - ,2;]/q = k[z1, -+ ,2;]/p™ # 0 and all zero divisors are nilpotent.
Suppose that f € k[z1,- - ,x;]/q is zero divisor. Then, g such that fg = 0. If f has nonzero constant,
say f = fo + ¢ where fj is a polynomial with zero constant, then 0 = fg = fog + ¢g. Since cg # 0,
fog = —cg. However, degree of fyg is zero or greater than that of cg since degree of f is greater than
1. This implies deg fog = 0, then g = 0, contradiction. (The other case cannot happen since fog and
cg have the same degree.) Thus, f should have zero constant. And as we know, if we multiply f m
times, then every term in f should have degree m, which is zero. Thu,s f is nilpotent.

9. Suppose z is zero divisor. Then there exists a # 0 € A such that za = 0. Thus, z € (0: a), and since
a#0,(0:a)+#(1). Hence, apply Exercise 1.8 on a ring A/(0 : a) to get an existence of a minimal
prime ideal p on A/(0 : a), and by Proposition 1.1 their contraction p is minimal prime ideal containing
(0;a). Thus there exists p € D(A) such that = € p.

Conversely, if z € p € D(A), then p is a minimal prime ideal containing (0 : a) for some a # 0. If
x € (0: a), done. Otherwise, notes that by Proposition 1.1, p on A/(0 : a) is still minimal prime ideal
containing 0. Let S = A/(0 : a) \ p. By Exercise 3.6, S is a maximal multiplicative closed subset
of A/(0 : a) such that 0 ¢ S. Now since Z # 0, let S’ = {s7" : s € S,n € N}. First of all, " is
multiplicatively closed, since any two elements sz and s'Z!, there product is ss'z™*+ € S’. Also,
S"# Ssincez€p=A/(0:a)\ S but € S’. Thus, S’ has 0, which implies s7™ = 0 for some m € N
and s € S. This implies sz™ € (0: a), thus sz™a = 0. This implies z is zero divisor in A.

For the second statement, notes that Spec(S~1A) as a subset of Spec(A) is
{x € Spec(A) : p, NS = 0}.
Now observe that with respect to a canonical map ¢: A — S~1A,
Ann(z)® = S~ Ann(z) = S0 :x) = (S7'0: S7tx) = (0/1: 2/1) = Ann(z/1)

by Corollary 3.15. Also notes that Ann(z/1) = Ann(z/s) since if a/t € Ann(x/1), then az/t = 0
implies 3¢ € S such that azqg = 0. Then, ax/ts is also zero since this ¢ makes g(az — ts0) = gaz = 0.
Converse is the same.

By Proposition 3.11, every ideal in S~!A is an extended ideal. And by Proposition 3.11 iv), let S~1p
be an arbitrary prime ideal in S~! A induced by p € Spec(A). If S~'p € D(S~1A), then it is a minimal
prime ideal of (0: a/s) = Ann(a/s) = Ann(a/1). Thus, by 1-1 correspondence (Proposition 3.11 iv)),
p is minimal prime ideal in A containing (0 : a). (First of all, for any = € (0 : a), /1 € (0 : a/1),
hence z/1 € S~1tp, thus its preimage x is in p. And if there is another prime ideal q conatining (0 : a)
but contained in p, then S~1q contains Ann(a/1) but contained in p because of inclusion relationship
of its generating set. It contradicts the fact that S~!p is minimal prime ideal containing Ann(a/1).
This shows that if S~™'p C D(S7'A) then p € D(A). Since p is in the image of D(S™1A) if and
only if S~tp C D(S~1A), this implies D(S~tA) C D(A) N Spec(S~1A). Conversely, if p is a minimal
ideal containing (0 : @). Then, S™!p contains Ann(a/1) and minimal by the same argument, and 1-1
correspondence. This implies D(S™1A) O D(A) N Spec(S~1A).

If zero ideal has primary decomposition, the by the 1st uniqueness theorem, there are finite prime
ideals of form (0 : ) for some x € Z C A with |Z| < co. Since all prime ideals are radical, a prime
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10.

ideal containing (0 : z) should contain (0 : x). This shows that all associate primes of zero ideal
should be contained in D(A). Conversely, suppose p is a minimal prime ideal containing (0 : a) for
some a # 0 € A. Suppose {p, j=1 be set of all associate primes of 0. Since p contain 0, by Proposition
4.6, it contains p; for some j, which is minimal associate prime. If a & [ J;__, p;, where p; is an associate
primes of 0 (and n is the number of all distinct associate prime ideals of 0), then (0 : @) = 0. Minimality
of p with Proposition 4.6 implies that p = p;.

If a € p; for some i € [n], then by Proposition 4.7, (0 : a) # 0. Since every elements in (0 : a) is zero
divisor, (0 : a) C J!-, p;. By Proposition 1.11 i), (0 : @) C p, for some j. Since p is minimal prime
ideal conatining (0 : a),

pj 2 p.

If p is minimal prime ideal containing 0, then it is an associate prime of 0, done. Otherwise, there is a
minimal prime ideal pj contained in p. Thus,

pi2p 2 Pk

Now for given minimal decomposition 0 = ﬂ?zl q;, think

q= (ﬂ ¢;) Nq where ¢ =pnNgq;.
i)

First of all, if p = r(q;) for some 4, then done. Thus assume that p # r(q;) for any i. Now think about
second condition of minimal prime decomposition. First of all, ' 2 j2i 45 since q; doesn’t. For any
I #1, ﬂqﬂ qq € q; from the original minimal primary decomposition,

Pm(ﬂCIq) ZaqnNg.
q#l

Since p N (M, 9¢) = (M1, 9¢) N a" and g, N q C g, this implies

(ﬂ d9) Na" € a.
q#l,i

Hence q = (ﬂ?#j g;) N g’ is minimal primary decomposition of q. And q = 0 since

n

(Na)nd =()a)Np=0np=0,
i#j i=1
thus p, which is r(q') = r(q;) Nr(p) = p; Np = p, is a associate prime of 0. Hence D(A) is the set of
all associate primes of 0.
(a) If x € ker(A — Ap), then 2/1 = 0/1 implies 3s € A — p such that sz = 0. Thus sz € p, which
implies = € p since s & p.
(b) If 7(Sp(0)) = p, then from S,(0) = |J,cg Ann(s),

r(Sp(0)) = () Ann(s)) = | r(Ann(s)).

seS seS

Hence, 7(S,(0)) 2 p if and only if Vo € p, € J,.g7r(Ann(s)), if and only if there exists
n €N, s € S, such that sz™ = 0 if and only if S = {sz™ : s € S, } contains 0 for any € p = A—S5,,
if and only if S, is a maximal multiplicative set not conatining 0, if and only if p is minimal prime

ideal of A by Exercise 3.6. Since 7(5,(0)) 2 p if and only if 7(S,(0)) = p by i), done.
(¢) Apply Proposition 4.12 5) in this note.
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11.

12.

13.

(d) 0 is definitely in S, (0) for all p € D(A).
Let z # 0 € S,(0) for all p € D(A). Then, for any p € D(A), Is, € A — p such that zs, = 0.
Thus x is zero divisor since 0 € A — p for any p, thus z € p for some p € D(A) by Exercise 4.9.
However, by given condition x € A\ p, contradiction. Thus z = 0.

For the first statement, by 4.10 ii), 7(S,(0)) = p. To see Sy(0) is primary, let zy € S,(0). Then, In € N
such that z"y™ € S,(0). Thus if ¢ S,(0), then 2™ & p, hence y™ € p, which implies y € p = 7(S,(0)),
hence Im € N such that y™ € S,(0). Since zy just arbitrary chosen, S,(0) is primary. To see it is the
smallest p-primary, Apply Proposition 4.12 4).

For the second statement, let @ = (), ¢,i,(4) Sp(0) where min(A) is a set of all minimal prime ideals
of A. Notes that by Proposition 1.8, (), ;e P = (yemin(a) P = R nilradical, since every prime ideal
contains at least one prime ideal in min(A). By Exercise 4.10 1),

a= ﬂ Sp(0) € ﬂ p="R

pEmin(A) pEmin(A)

For the third statement, if every associate prime ideal is isolated, then min(A) = D(A), thus by
Exercise 4.10 iv), a = 0. Conversely, if a = 0, then 0 = a = ﬂpEmin(A) Sp(0) is primary decomposition
of 0 by the first statement. Now just get rid of superfluous components so that for a subset Z of
min(A),

0=a= () S(0)

pez

is the minimal primary decomposition. Thus, Z = Ass(0) C min(A).

(a) By Proposition 4.12 i), S(a) = a®®. Thus,

S(a)N S(b) =a*Nb* = Al = = (anb)*=S(anb)
Exercise 1.18 Exercise 1.18
(b) ec e\c ec
Sr@) =rl@) = rl@) = r()=r(S().
Prop 3.11 v) Exercise 1.18

(c) If s € SN a, then a® contains s/1-1/s = 1/1, thus a® = S71A, thus S(a) = (S714)c = A = (1).
Conversely, if S(a) = (1), then 1/1 € a®, thus 3a € a and s € S such that sa = 1. This implies
s € a since s2a = s and ideal is closed under multiplication.

(d) Ifx € S19(a), then 3s; € Sy, 59 € S such that s1s9x € a. Then, sy € S?(a), thus x € S1(Sa(a)).
Conversely, if © € S1(S2(a)), then 3s; € Sy such that syz € Sy(a) which implies Jso € Ss such
that sos1x € a, thus z € S1.53(a).

(e) For the last statement, if a = ()}, q; be a minimal primary decomposition, then, by Proposition
4.9, for any multiplicatively closed set S, S(a) = npm s—p 9i- Since all possible such intersection
is finite, so the set of ideals {S(a) : S is multiplicatively closed set} is finite.

(a) Notes that p® is maximal in A, thus (p®)" is p°-primary. By Proposition 3.11 v), (p©)" = (p™)°
in this extension case. Also by [3][p.50] contraction preserves primary. thus (p™)¢¢ is primary.
Now it suffices to show that its radical is p. To see this,

_ nye\c _
= r)) =
Prop 3.11 v) Exercise 1.18

Notes that r(p™) = p since p C r(p™) is clear and if x € r(p™), then 2™ € p™, thus x € p by prime
property of p. Thus,
S(p) =r(S("))

And S(p) = p°© = p by Corollary 3.13, a one-to-one correspondence of prime ideal of A, and
prime ideals contained in p.
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(b)

First of all, we claim that

Claim XXIII. p(" is the smallest p-primary ideal containing p™.

Proof. If z € p(™ = S,(p"), then Is € S, such that sz € p". Thus if q is a p-primary ideal
contains p”, then sz € q. Since s € p, neither does s™, thus s,s"™ ¢ q for any n € N. Thus x € g.
Hence q O p(”). O

Now let p™ = (“, q; be a minimal primary decomposition. Then, p = r((:, ;) = Nie; ().
By Proposition 1.11 ii), p 2 7(q;) for some 7. Since p C r(q;), this implies p = r(q;). If 7(q;) < p,
then

ﬂ r(q:) Cr(q;) S,

contradiction. Thus p is isolated prime of pr.

Now notes that S, Np; # (0 for any j # ¢. To see this, since p is isolated prime, any p; strictly
contains p or do not have inclusion relationship with p (from the minimality of decomposition,
there is no case that p; = p.) This implies that S, = A — p meets p; for all j # i. Thus, by
Proposition 4.9, (actually Corollary 4.11), S, (p™) = q;. This implies p(™ = q;, thus it is p-primary
component.

We claim that

Claim XXIV. p("+7) s the smallest p-primary ideal containing p(™p(™).

Proof. Let q C p(™p(™) be a p-primary ideal. For any = € p("+") there exists s € Sp such that
xs € p™ " = p™p™ C q. From s ¢ r(q), « € q by primary condition. Thus p(™+") C g. O

By
Now suppose p(™)p() = ﬂ;nzl q; be a minimal primary decomposition. Then, notes that by
Exercise 1.13,

r(p™pt™) = (™) Nr(p™) PP =p.

NP,
Exercise 4.13 i)

Hence,
p=rE™p™) =r([a;)=()ra)
i i1

where last equality comes from by Exercise 1.13. By Proposition 1.11 ii), p 2 r(q;) for some .
Since p C r(q;), this implies p = r(q;). If r(q;) C p, then

-

p=1|r(a) Crlq;) <p,

=1

contradiction. Thus p is isolated prime of p("™)p(™).

Thus, by the same argument we did in the proof of ii), S, doesn’t meet p only. Thus Corollary
4.11 implies that q, = .5, (p")p(™)) Hence it suffices to show that Sp(p(m)p(”)) = p(m+1) To see
this equality, notes that if # € Sy (p™p(™), then 3s € S, such that sz € p™p) C p(m+n) Hut
since s ¢ r(p(™*+™), x € p(m+™) by primary condition. Conversely, if z € p(™+™) then Is € S,
such that sz € pt™ = p"p™ C p(Mp("™) by claim XXI. This implies that /1 = a/1 € (p(™p(™))e,
which implies 2 € S(p™p(™)).

It has a typo. What we actually do is
p(") = p" — p"is p — primary.

This is because p(™ is always p-primary by i).
If p(®) = p™, then by i), p” is p-primary. Conversely, if p™ is p-primary, then by the above claim
XXI, p(™ is the smallest p-primary ideal containing p”, they coincides.
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14.

15.

We claim that

Claim XXV. Suppose q is p’-primary for some prime ideal p’. If (q : z) is a mazimal ideal among
all ideals of this form (for x & q), then r(q) = (q : x).

Proof. By Proposition 4.4 ii), (q : x) is p’-primary ideal containing q. Let y € A\ (q : ). Then by
definition of (q: z), zy & q. Thus, By Exercise 1.12,

(a:2) S ((q:2):y) = (q:2y).
first inclusion comes from 1.12 i), and second equality comes from 1.12 iii). By maximality with zy & q,
(q:2y) = (q: x). This show that for any z € A, zay € ¢ = 2z € q. By taking z = y", y" "z € q
implies y™x € q. Thus, applying this argument (n 4 1)-times, we can conclude that y™z € ¢ implies
x € q. However, we already assume x ¢ q, thus there is no n € N such that y™ € (q : ). Hence,
y&r((q:x)) =p'. Tosum up, y € A\ (q: =) implies y € A\ p’. In a contrapositive form, y € p
implies y € (q : ). Thus

(q:z)Cr(a:z)=p" C(q:2)
which implies (q: z) =r(q:z) =p' =r(q). O

Let a = ()~, q; be a minimal primary decomposition with p; = r(q;). Suppose z € A\ a is such that
(a: z) is maximal element. By Exercise 1.12 iv)

m

(a:z)=()(i:2)

i=1
Also, by Lemma 4.4, (q; : ) is p;-primary or (1). Now take y € ((j; d;) \ 4 = (N} 9;) \ @. Then,
(a:z) C ((a:2):y) = (a:2y), and maximality implies (a : zy) = (a : ). Thus, we may assume that
r € (N} 95) \ a. Hence by Lemma 4.4,

m

(a:x) = ﬂ(qi:x):(qi:x).

i=1

Now, if there is y € A\ q; such that (q; : y) 2 (q; : ©), then by the same argument, we can assume
that y € (j; d;) \ qi, in that case, by the Exercise 1.12 i),

(a:2)=(q;:2) C(qi:y) 2 (q:zy) =(a:zy) =(a:x)
implies that (q; : y) = (q; : ). (Notes that zy is still in (N, q;) \ ai = (N} q;) \ a, that’s why
(q; : 2y) = (a : zy) by Lemma 4.4. ) Thus, (q; : =) is maximal among all such forms, thus by the
above claim, (q; : ) = r(q;) = p;. Hence, p = (a: x) = p,.
Notes that
Si(a) ={x € A: f"z € a for some n} = U (a: f™)
n>0
implies S¢(a) 2 (a: f") for any n.
Let a =), q;- Assume without loss of generality, let ¥ = {p1,--- ,p,,}. Then,
Sinp; #0 <= frepiforanyneN <= fep, < p; €.

Thus, Sy meets only py11,- -+, pn. By Proposition 4.9,
Sp(a) =) 9 = ds-
i=1

Thus it suffices to show that (a: f¥) contains Sy(a) for some large k. Notes that (a: f*) C (a: fm*1).
By Exercise 1.12 iv), we know (a : f¥) = (', (q; : f*). Thus it suffices to find n such that Vz € qs,
ftx € q; for all .. Now let n; € N such that Vo € qx, f"z € q;. When p; € X, such n; exists
since € p;, so n; = 0. If p; € X, then since f € p; = r(q;), thus such n; exists. Hence, by letting
n = max; n;, done.
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16.

17.

For any ideal a, it is decomposable, thus by first three lines of the proof of Proposition 4.9 in 3], S~'a
has a primary decomposition. Since Proposition 3.11 i) says that every ideal in S™!A is extended ideal
of form S~'a, done.

To use hint, we need to generalize Exercise 4.11.

Claim XXVI. Ifp is a minimal prime ideal of a ring A containing a, then Sy(a) is p-primary ideal.

Proof. Let f : A — A/a. Then, we know that S;(0) is the smallest p-primary ideal in A/a by Exercise
4.11. Now let q = f~!(S5(0)). Since contraction of primary ideal is primary by [3][p.50], q is primary.
Also,

r@@) = [r(S50) =) =p

Exercise 1.18

shows that q is p-primary. O

Let a; = a for use of induction. Let p; be a minimal element of the set of prime ideals containing a.
Then, q; := Sy, (a) is pi-primary by above claim. By L1, q1 = (a : z) for some = ¢ p;. We claim
that a = ¢1 N (a + (x)). Notes that a C ¢; N (a + (x)) is clear. So, suppose f € g1 N (a+ (z)). Then,
f=a+ gx for some a € a,g € A. Also, from q; = (a: ), fo € a, which implies ax + gz? € a. Hence,
gx? € a. From the condition = &€ p; = r(q1), g € q1 = (a : ), which implies gz € a, thus f € a.

Let as be a maximal element of the set of ideal b D a; such that ao N b = a; and choose a; so that
x € ag, therefore az C py. Such ay exists since (a + (x)) = (a; + (x)) satisfies all conditions, and if we
take a collection of such ideals, then any chain (by inclusion) has a maximal element, which is union of
all (by inclusion condition this union is actually an ideal) so Zorn’s lemma implies that such maximal
ideal exists. Say as be such a maximal ideal. If as # (1), then do the same argument above to get
2, P2 such that a1 = q1 N g2 N (az + (z2)) for some x5 & po.

Now to use transfinite induction, suppose that a; = ﬂﬂ<a qg(aq + o) for some ordinal o and z, ¢
Po = 7(qa), and a, € pg for any 8 < a. If a, # (1), then by the same argument above we have
On+1 containing (a, + (z,)) maximally and such that a3 = as41 N (ﬂ5<a qg). Similarly, take po41 a
minimal prime containing a,4; and take qo4+1 = Spa+1(ao¢+1) which is py41-primary, then L1 implies
that qat1 = (Ga4+1 ¢ Tat1) for some Zo41 & Pat1. By the same argument above, we have a,11 =
da+1 N (Gat1 + (Ta+1)). Thus,

a1 = o100 ([ 48) = Gat1 N (@as1 + (2a41)) N ([ 48) = @as1 + (@) N [ ds).
BLa B<a B<a+1

This is completion of successor step of the transfinite induction. For the limit step, suppose that for
any a < f3,

ap = a1 N ( n dy)

y<a+l

holds and a, C a, for any v < a. Then, let ag = J,_5a,. Then

aﬁmﬂqP:U(avmﬂqp):alu U (ay41 N ﬂ quv N m qp)

p<pB v<B p<pB y+1<8 v<y+1 y<p<pB
= a; U U (a1 N ﬂ qp) = a1 U U (a1) = a1.
From successor step y+1<8 Y<p<pB Y+1<B

Hence it holds for any ordinal.

Thus if a, = (1) for some «, then done. Also, since ag grows at most | 4|, so it eventually terminate
at some ordinal 5 < |A|, with a decomposition a = a; = ﬂv <5 9y, which is (possibly infinitely many)
primary ideals.
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18. i) — L1: Let a = ()", q; be a minimal primary decomposition and p; = r(q;). Now let p be a prime
ideal and S, = A\ p. Then, notes that for any = € A, by Exercise 1.12, (a: z) = ():~,(q; : ). Then
let I={ie[m]:q, Cp}and J=[m]\ I Then,ifi e I, S, doesn’t meet p;. However if ¢ € J, then

Sp nq; 7& 0. Thus,
Sp(a) = m qi-

iel
Now, Lemma 4.4 shows that (q; : ) = (1) if x € q; and (q; : ) = q; if © & p,;. Thus if we show that
there exists z € ((;c;4;) \ U;c; pi, then done. To get this @, notes that for each j € J, 3z; € q; \ p,
thus = = [[;c;2; € (N;c;9; \ p. Since p contains p; for all 7 € I (you can see it by taking radical)
done.

i) — L2: Let a = ()%, q; be a minimal primary decomposition. If we let J,, = {i € [m] : p; N S, =
0}, then S,(a) = ﬂjeJn q; by Proposition 4.9. By the inclusion relationship, as n increase, J,, is
nonincreasing sequence of sets. Hence it converges to some set by taking J = (1,5 Jn-

ii) — i): By Exercise 4.17, we know that a = (,_3qa for some ordinal 3 < [A[. Also, for each
finite stage, a = a,4+1 N gy N ---MN g1, and notes that by construction a,,41 contains z, 411 & p,, thus
A—p, =8, implies Sy, Na,41 # 0, thus by Exercise 4.12,

Spa(@) =) NS, (a0 Na) = Sp(da) 0N S, (@) =dn N Na
Exercise 4.12 i)

since each ¢; is p;-primary and by inclusion relationship of p; implies Sy, does not meet p;, with
Proposition 4.9.

Also by construction of Exercise 4.17, qo = Sy, (a). Thus, by inclusion relationship of p,, we know
that Sp, 2 --- 2 Sp, 2 .-+ is a descending chain of multiplicatively closed subset. Now by L2, we
knows that S, (a) = Su(a) for any a > n.

Now to see that S, (a) =(\;_, qn is a primary decomposition, notes that
a=S,(a)N ﬂ Yo
a#0,1,-- ,n,a<p
Now let v be an ordinal such that n < v < 8. Then,
Sp,(@) = S (Su@)NS@)n (] Sp,(da)
Exercise 4.12 i) a#0,1,+ ,n,a<lf
Since Sy meets p, for a > v, so Sy (4a) = (1). Thus,
Sp, (@) = Sp, (Sn(@) NSy, (3) 0 () Sp,(d0)
a#0,1,- n,a<ly

Also, if z € Sy_(q,), then 3s € S, such that sz € ., which implies = € q,,. Conversely, Sy (q,) = q5°
implies Sy (qy) 2 @, thus Sy (q4,) = g,. Also, since p, contains p; for all i € [n], Sp (Sn(a)) =

Sn(a) = Nz, G-
Hence, with the fact that S,_(a) = Sy (a),

n n
ﬂ q; = (ﬂ gi) N gy N some other terms
i=1 i=1
thus g, contains (), g;. Since vy was arbitrarily chosen, this implies that

o= () de =[]
=1

a<f

Hence a has a primary decomposition.
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20.

21.

First statement is Proposition 4.12x% 4. in this note.

For the second one, use proof by induction. If n = 1, then a = p; is such ideal, done. Suppose n > 1
and let p,, be maximal in the set {p1,---,pn}. By inductive hypothesis, there exists an ideal with a
minimal primary decomposition b = ﬂz:ll q; such that r(q;) = p;,. We claim that b ¢ S,,(0). If we
show this, then by Exercise 4.11 stating that Sy, (0) is the smallest p,-primary, we have a nonempty
collection of p,,-primary ideals not containing b. So taking any q,, from the collection, and let a = bNq,.
To see it is minimal prime ideal, we need a useful claim

Claim XXVII. Let Q be a P-primary ideal. If IJ C Q and I € Q then J C P.

Proof. Let x € T\ Q. Then for any y € J, xy € Q C P. Since z € Q, y™ € @ by primary condition for
some n, thus y € P since r(Q) = P. O

Now, suppose ¢; 2 ﬂ;;l q;. Let J = ﬂ;:ll q;. Then, J € g; by the minimal condition of the primary
decomposition of b. However, Jq,, € J Nq, C q;. This implies q,, C q4, thus by taking radical we get
P C p;, contradicting maximality of p,,.

Hence it suffices to show that b € S, (0). Suppose not. Let p be a minimal prime ideal of A contained
in p,. Then S, (0) € S,(0) by Proposition 4.12% 5 (or Exercise 10 iii)), thus b € S,(0). If we take
radical, the by Exercise 10 ii),

n—1

(v So.

i=1

By Proposition 1.13 i), p; C p, thus p; = p by minimality of p. However this contradicts our assumption
that no p; is minimal prime.

Second equality follows from Exercise 2.2 ii) with N+ M = M. So it suffices to show the first equality.
Notes that (N : M) ={zx € A:xM C N} by definition. Thus its radical is just rps(N), done.

To get an analogues statements, I refer [4].

(a) If N C P C M be a submodule of M, then ras(N) C rpr(P). (Just check that z9M C P C N.)

(b) If C C B are algebras over A, then r5(C") =rp(C) for any n € N. (If 9B C C, then z7-1 € C,
thus 27" -1 € C™, thus 29" B C C".)

(c) rp(b) D f~1(b) for any ideal b of B and f : A — B a ring map. ( If z € f~1(b), then f(x) € b,
thus B = f(z)B C b.)

(@) r(rpu(N)) = rpe(N). (If z € r(ray(N)), then 2™ € rp(N) thus ™M C N for some n,q € N,
which implies © € rp; (V). The other inclusion is clear.

() ru(NNP)=ry(N)Nry(P). (Cisclear. If € rp(N) Nrp(P), then "M C N,27M C P,
thus ™M C N N P for some n,q € N.)

(f) rmM(N)=(1) < M =N (1M C N shows = direction. Other direction is clear.)

(¢) re(N + P) D r(rapg(N) 4+ rar(P)). ( By the first one, 7y (N),rp(P) € ry(N + P) implies
ra(N) + ra(P) C ra(N + P), then taking radical we get desired one.) Converse is false; let A

be nonzero unital commutative ring and M = A@® A. Then, let N = A@0,P =06 A, then
ryu(N + P) = (1) but rp(N) = rp (P) = (0).

Let 2y € (Q : M) = Ann(M/Q). Suppose y & (Q : M). Then, zy(M/Q) = 0 but y(M/Q) # 0, thus if
we let ¢, : M/Q — M/Q by m > x -, then

(Zgwoéy:éwyzo-
Since d_)y is nonzero, ker ¢, 2 Im(g{)y) # 0. Hence ¢, has nonzero kernel, thus z is zero divisor of Q.

Since @ is primary, z is nilpotent, thus In € N such that ¢,» = 0. Thus, "M C @, which implies
2™ € (Q: M). Thus (Q : M) is primary.
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22.

23.

Lemma 4.3x. If Q; is p-primary for i =1,2,--- ,n submodules of M, then So is Q =)/, Qi-

Proof. Let T € M/Q be a zero divisor. Then, 3y # 0 such that Ty = 0. This implies zy € Q =/, Q-
Since Z is zero divisor on each M/Q);, it is nilpotent, thus 2™ M C @; for some n; for each 7. Thus, let
n =Yy .n; then 2" M C @, which implies that x is nilpotent on M/Q. To see it is p-primary,

r(Q: M) =r(()Qi: M) =r()(Qi:M)=(\r(Qi: M)=[\p=p

where (Q; : M = ((Q; : M) is application of generalization of 1.12 iv). To see this, if x € (Q; : M,
then zM C (Q;, thus z € (Q; : M) for all 4. The other direction is similar. O

Proposition 4.4x. Let Q C M be a p-primary submodule of M. Then,

(a) if x € Q then (Q : z) = (1);
(b) if x & Q then (Q : x) is p-primary, and therefore r(Q : x) = p;
(c) ifx &y then (Q:z):={meM:a2meQ}=Q.

Proof. 1) is clear. For ii), let yz € (Q : ) but y & (Q : ). Then yz.x € Q but y.x € Q, so Z is zero
divisor of M/Q, hence nilpotent. This implies ¢,» = 0 as an endomorphism on M/Q. Thus "M C Q,
thus 2™ € (@ : x). This implies (Q : z) is primary. To see it is p-primary, notes that (Q : M) C (Q : z)
implies p C r(Q : z). Also, if a € r(Q : z), then a" € (Q : z) for some n € N, thus a"z € Q,
which implies a is zero divisor on M/Q, thus by primary condition a is nilpotent, i.e., ¢,» = 0 as an
endomorphism on M/Q. This shows that a* € r3;(Q) = p, thus a € 73/(Q) = p since it is radical.

For iii), if m ¢ Q but m € Q, then z is zero divisor on M/Q, thus nilpotent, hence ¢,» = 0 as an
endomorphism on M/Q. Thus, x € rj(Q) = p, contradiction. Hence (Q : ) C Q. The other way of
inclusion is clear. O

Theorem 4.5x. If N = Q1N --NQ, is a minimal primary decomposition with p; = ra1(Q;),then p;
are precisely the prime ideals which occur in the set of ideals {r(N : m)|m € M} hence are independent
of the particular decomposition of N.

Proof. Fix i € [n] and let m € (;,; @; \ Qi Such m exists since the given decomposition is minimal.
Then,
(N :m) =@y :m) = (Qi:m)
J
where equality comes from the above argument similar to 1.12 iv). By Proposition 4.4%, (Q, : m) = (1)
when j # ¢. Thus (N : m) is p;-primary, so each p, = (N : m) for some m € M.
Conversely, let 7(N : m) is prime p for some m € M. Then, (N : m) = ((Q; : m) shows that

r(N:m)= ﬂ pi-

mgQ;

By Exercise 1.11 i) and ii), with the assumption that (N : m) is prime, r(N : m) = p, for some i. [

Last comments in [3] implies that for any decomposable submodule N of M, with a minimal primary
decomposition N = (', Q;, Qi/N is rar/n(Qi/N)-primary module with 7p/n(Qi/N) = ra(Qs)-
To see this, first of all, (Q;/N : M/N) = {z € A: a2M/N C Q;/N} ={z € A:zM C Q;} =
(Qi : M) gives ran(Qi/N) = 7m(Q;). And to see Q;/N is primary, let x be a zero divisor on
(M/N)/(Q;/N) = M/Q;. Then, x is zero divisor of M/Q;, thus nilpotent on M/Q;, therefore nilpotent
on (M/N)/(Qi/N), done. By the same argument in different direction, if Q;/N is ry;/n(Qi/N)-
primary, then Q; is rps(Q;)-primary.
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Proposition 4.6x. Let N be a decomposable submodule of M. Then any prime ideal p D rpr(N)
contains a minimal prime ideal belonging to N, and thus the minimal prime ideals of N are precisely
the minimal elements in the set of all prime ideals containing N

Proof. If N = (i, Q;, then ra(N) = (., ram(Qi) = ()i pi where Q; is p;-primary module. By
Proposition 1.11 ii), from p D ra(N) = (i, pi, p contains p; for some j € [n]. Hence p contains some
minimal prime ideal of V. O

Proposition 4.7+. Let N be a decomposable submodule of M, let N = (I, Q; be a minimal primary
decomposition, and let rp(Q;) = p;. Then

Upi:{zEA:(N::v)#N}.

i=1

In particular, if the zero module is decomposable, the set D of zero-divisors of M is the union of the
prime ideal belonging to 0.

Proof. By the above generalization argument, and the fact that for any x € A, (0: z) # 0 in M/N
implies (N : ) # N in M wh we can assume N = 0 (otherwise we can think everything on M/N.)
Then let D' = {z € A: (0: x) # 0} the right hand side. If (0 : ) # 0 for some z, then there exists
m € (0 : x), with m # 0 but m = 0. Thus z is zero divisor in a sense of Exercise 4.21. Thus,
D D D'. Conversely, if z is zero divisor, then Im # 0 € M such that xm = 0, thus m € (0 : z) implies
(0:x) #0, thus x € D’. This shows that D' = D.

Also, if x € r(D), then 2"m = 0 for some nonzero m and some n € N, thus pick n the smallest such
that 2™m = 0, we can see that 2"~ !m # 0, which implies # € D. Hence r(D) = D. Thus,

D:r(D):r(U(O:m)): Ur(O:m).

m#0 m#0

(Since it is union of set, so we can apply argument on chapter 1. ) By the first uniqueness theorem
(Exercise 4.22), all prime ideal belonging to 0 has a form 7(0 : m). Thus D contains union of prime
ideals belonging to 0. Also, by the proof of Exercise 4.22, each (0 : m) is intersection of some prime
ideals belonging to 0, thus contained in a prime ideal belonging to 0, which shows that D is equal to
union ot prime ideals belonging to 0. O

Proposition 4.8x. Let S be a multiplicatively closed subset of A, and let Q be a p-primary module of
M.

(a) If SNp #0D, then ST1Q = S~ M.

(b) If SNp =0, then ST1Q is S~ tp-primary and its contraction in M is Q.

Hence primary module of ST'M corresponds to primary modules of M.

Proof. For the first one, if s € SN p, then s"M C @ for some n € N. Hence, for any m/t € S~'M,
m/t = s"m/s"t € S71Q, hence ST'M = S71Q.

For the second one, let z/s € S~1A is zero divisor of ST'M/S~'Q. Then, there exists nonzero
m/t € ST'M/S71Q such that xm/st = 0. Thus zm/st € S71Q, there exists u € S such that
uzm € Q. Since m ¢ Q, ux is zero divisor of M/Q, thus uz is nilpotent of M/Q since @ is primary.
Hence, m + (ux)¥m = 0 for any m € M/Q. Hence,

2*STIM = 2FuFSTIM C ST1Q.

This implies z is nilpotent in S~!M/S~1Q. Thus S~!Q is primary module.

Let # € p = rp(Q). Then, 2*M C Q for some k. Thus, for any s € S, (z/s)*S™IM = 2*¥S~1M =
S—H(xkM) C S7'Q. Hence, 2/s € rg-1,,S7'Q for any s € S. This implies that S~'p C rg-1,571Q.
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Conversely, if z/s € rg-13,S71Q, then 3k € N such that (z/s)*S™'M C S~'Q, which implies that
(x/s)*S™IM = 2*S~1M C S71Q. Thus for any m € M, x*m/1 € S~1Q implies 3t € S such that
tz¥m € Q. Then tz* is zero divisor of M/Q, thus nilpotent, i.e., t"2*"m € @Q for any m € M, thus
t"zk" € ry(Q), which implies t2* € rj/(Q) = p by radical property. Since t ¢ q by construction,
x* € p, which implies x € p. Thus, for any z/s € rg-1,;971Q, x € p. This implies that rg-1,,571Q C
S~1p, thus they are equal. This shows that S~1Q is S~!p-primary.

Lastly, it suffices to show that every submodule of S™'M is extended module, i.e., S™'N for some
submodule N of M. Let N’ be a submodule of S™'M. Then, let N = {m € M : m/1 € N'}, i.e.,
contraction of N" along M — S~!M. Then, S™'N D N’, since for any m/s € N’, sm/s =m/1 € N’,
thus m € N, which implies m/s € ST'N. Conversely, if /s € S™!N, then x € N, thus #/1 € S™!N,
therefore (1/s) - (x/1) = x/s € N’. This shows that N’ = S~!N.

Thus, extension of primary ideal is primary. Conversely, let S™1@, a submodule of S™'M, be S~ 1p-
primary ideal. (We can say this since every prime ideal in S~1 A is extended form.) Then, it suffices to
show that @ is p-primary ideal. From the map f : M — N and @ is primary ideal of N, then M/Q° is
isomorphic to the submodule of N/Q by map f, thus every zero divisor of M/Q° is also a zero divisor
of N/Q, thus nilpotent in N/@Q, which implies nilpotent in M/Q¢ as a submodule of N/Q. To see it is
p-primary, the above argument exactly applicable in this situation, since it use only property of 3/ (Q)
and rg-13,(S71Q). O

Proposition 4.9x. Let S be a multiplicatively closed subset of A and let N C M be a decomposable
module. Let N = (", Q; be a minimal primary decomposition of N. Let p; = ry(Q;) and suppose
the QQ; numbered so that S meets Pyy1,--- ,Ppn but not p1,--+ ,pm. Then,

STIN=(5"'Qi;, S(N)=[)Q:
i=1 i=1

and these are minimal primary decompositions.

Proof. First equality comes from Corollary 3.4 ii) with Proposition 4.8+ above. (S7'Q; = S™'M

for any i € {m + 1,---,n}. ) Since S7'Q; is S~'p;-primary by Proposition 4.8%, it is primary
decomposition. Also, each S~!p; are distinct, and if 3j € [n] such that S™'Q; 2 ﬂ:;J S71Q;, then

m m
Qi=rsrey 2 (s =N @
i£j i=1
contradiction. Thus it is minimal primary decomposition.

For S(N) = f~1 (ﬂm S’lQi) =i, Q;, first of all it is primary decomposition with distinct prime.

i#£]
Also, if Q; 2 ﬂ:’;g Q;, then @, contains ﬂ;;j Q;, contradicting the assumption that ();_, Q; is the
minimal primary decomposition. Thus, ()}, @; is minimal primary decomposition of S(N). O

Theorem 4.10x. Let N C M be a decomposable module, let N = (!, Q; be a minimal primary de-
composition of N, and let {p;,,- -+ ,pi,, } be an isolated prime ideal of N. Then (\;_, Qi; is independent
of the decomposition.

Proof. Let S = A\ U;n:l pi;- Then, S doesn’t meet p;; for any j = 1,---,m. For any other prime
ideal pi, pr & {piy, -+ ,Ppi, + implies py & U;”:l pi;, by Proposition 1.11 i), thus S meets p;. This
implies S(N) = ﬂ;nzl Qi; by Proposition 4.9+ and it is independent to the choice of minimal primary

decomposition. O

Corollary 4.11x. The isolate primary components (i.e., the primary components Q; corresponding to
minimal prime ideal p;) are uniquely deteremined by N.

Proof. No associate prime contains the minimal prime ideal except itself, thus by letting S = A\

U;4i pj. we can get S(NV) = Q; by Proposition 4.9+. It is independent of choice of minimal primary
decomposition. O
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5 Integral Dependence and Valuations

We mention some missing steps in the book.
First of all, in [3][p.60], it mentions finite type + integral = finite. We can reveal the details behind it.

Claim XXVIIIL. Let f: A — B be a ring homomorphism. Then f is of finite if and only if f is finite type
and integral.

Proof. Suppose f is finite type and integral. Then, there exists by,--- ,b, € B such that every elements in
B is polynomial of b;s with coefficients in A. Thus, B = Alby,- -, b,]. Corollary 5.2 says that B is a finitely
generated A-module, thus f is of finite.

Conversely, suppose f is of finite. Then, B is a finitely generated A-module, hence B has a generators
b1, , by, such that every elements of B can be written as linear combination of those. Since linear combi-
nation is also a polynomial, so B is of finite type. To see B is integral over A, notes that A[b;] is contained
in a ring B which is finitely generated A-module for each i. Thus, b; is integral over f(A), for all i. Hence,
B = Alby,- -+ ,b,] contained in a set of elements of B which are integral over B by Corollary 5.3. This
implies that B is integral over A. O

Proposition 5.15. See book.

)

In the proof, “The coefficients of the minimal polyonmial of z over K are polynomials in the z;” comes
from Viete’s theorem.

Theorem 5.16. Going down theorem.

In the proof, it assumes that © = By, p2NA. Then, s = yz~' comes from the fact that 1) s as an elements

of the field of fraction of B, say K’. Since A C B, K’ O K, thus z,y,z~ ' € K', therefore s = yx~!, since
x =y/s implies s = y/x in K'.

Also the book concludes that By, po N A C po implies they are equal. The other direction comes from the
fact that By, po = p5°¢ and a®® D a by Proposition 1.17.

Lemma 5.19. B is a local ring and m = ker(g) is its mazimal ideal.

In the proof, we can identify B as an elements of By,. Thus, B = By, implies that every elements 1/s € B
for any s € A — m, which implies that every elements outside of m is unit. Thus, by Proposition 1.6 B is a
local ring.

Lemma 5.20. See the textbook.

If m[z] = B[x], then 1 € m[z], thus 1 = Zle m f; for some f; € Blz], and any f; can be denoted as

polynomial of x over B, thus 1 is sum of polynomials over z whose coefficients are all from m.
Theorem 5.21. Let (B, g) be a mazimal element of ¥. Then B is a valuation ring of the field K.

In the proof, notes that unit in 13 € m’ thus m’ N B is a proper ideal of B containing m, thus by
maximality, m = m’ N B.

Also, the author claimed that k' = k[z] which is a subring generated by k and T implies Z. To see this,
we need a claim.

Claim XXIX. Let A be an integral domain that is finitely generated over a field K. If A is a field, then A
is algebraic over K.

Since k[Z] is a field, by the claim 7 is algebraic over k.

Proof. To use induction, let A = k[z;]. If z; is not algebraic, then it is transcendental, thus k[z] = k[z]
but k[z] is not a field, contradiction. Now suppose that A = k[z1,---,2,]. Then, since A is a field,
A = k[z][z2,- - ,2n] = Kk(21)[22, - ,2n]. Hence, by inductive hypothesis, zo,--- ,z, are algebraic over
k(z1). Thus, for any 2 < i < n, there exists f; € k(z1)[z] such that f;(z;) = 0. Now we can rewrite

f; = Bjx™ + lower order terms
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such that B; € k(z1). By multiplying their product of all denominators of coefficients, we can assume that
every coefficients of f; is in k[z1]. Let B = [[;_, B; and define S = k[21, B]. Notes that B; € S for all
2 < j <mn. Also,

AD S[za,- ,zn] Dklz1, 0,20 = A
implies S[za,---,2z,] = A. Thus, f;/A; = 2™ + lower terms € S[z], and f;(z;)/A; = 0 . Hence, z; is
algebraic over S, which implies that z; is algebraic over A since A = S. O

And in the proof of Corollary 5.22, the author needs a claim that

Claim XXX. If A is a subring of a field K with homomorphism f : A — Q, then there exists a valuation
ring B such that A C B C K and homomoprhism g : B — § such that gla = f.

Proof. Let ¥ ={(B', f) € X : (B, f) 2 (A, f)}. Then, it is nonempty since (A, f) is in ¥’. Also, any chain
in this collection has a maximal one by unioning all elements in the chain. (By given condition they are glued
well.) Thus, by the Zorn’s lemma it has a maximal elements (B.g). Notes that this maximal elements is also
a maximal elemtns of X, otherwise 3(B’, ¢’) such that (A, f) < (B.g) < (B',¢’), thus (B’,¢’) € ¥, therefore
(B’,¢") = (B, g). Hence by applying theorem 5.21, we know that (B, g) is a valuation ring containing (A, f).
Also, this map g is extension of f. O

Thus, using (5.21) in the proof of Proposition 5.23 is actually using the above claim.
Definition . Integral homomorphism [ : A — B is a ring homomorphism such that B is integral over f(A).

1. We can factor through f as ‘ ,
AT f(A) S B.

Then, r is surjection and s is injection. By Exercise 1.21 iv), r* is homeomorphism of Spec(f(A)) onto
V(ker(r)). Thus, it is closed map. So it suffices to show that s* is closed map.

Let b in B. Then, b N f(A) is a contraction of b with respect to i. It suffices to show that s*(V (b)) =
V(6N f(A)). Let p be a prime ideal of B containing b. Then, s*(p) = pN f(C) contains b N f(A), thus
s*(V(b)) € V(6N f(A)).

Conversely, if p is a prime ideal in Spec(f(A)) containing bN f(A), p is prime ideal over f(A4)/bN f(A).
Proposition 5.6 says that B/b is integral over f(A)/b N f(A). Thus by Theorem 5.10 3q a prime
ideal such that gn f(A)/6N f(A) =p. If welet ¢ : f(A)/bN f(A) — B/b is a canonical injective
homomorphism, then theorem 5.10 implies that ¢* is surjective continuous map. Since Spec(B/b) =

V(b) C Spec(B) and Spec(f(A)/b N f(A)) = V(bN f(A)) € Spec(f(A)),

V(6) 2 Spec(B/b) L spec(£(A)/6 1 F(A) = V(6N £(A))

is surjective continuous map. By Exeercise 3.21 iii), this long map is a restriction of s* on V(b). Thus,

s*(V(0)) = V(6N f(A)).

2. Notes that f(A) is a subring of Q. Thus, f(A4) = A/ker(f), and ker(f) is a maximal ideal of A. Say
m = ker(f). Then, by Theorem 5.10 there exists a prime ideal m’ of B such that m’ N A = m. Hence,
B/w/’ is integral over f(A). Thus, if we find out an injective homomorphism g : B/m’ — Q which is
extension of f : A/m — Q, then g : B — B/m’ — Q is an extension of f since for any a € A C B,

g(a) =g(a+w') = fla+m) = f(a).

Thus just assume that A, B are integral domain. Let ¥ = {(C,h) : A C C C B,h|s = [} be a set of
all pair of integral domains C' and an extension of f over C. Define order (C,h) < (C', ') if C C '
an h'|c = h. Then, (A, f) € 3, and for any chain, the union of all rings in the chain and maps give
well-defined integral domain and maps into Q2. Thus, by Zorn’s lemma, there exists a maximal element
(C,h). If C # B, then 3b € B\ C. Since B is integral over A, b is integral over A, thus integral over
C. Hence, 0 = Y7, ¢;b" for some ¢; € C. Suppose that n is minimal among all possible polynomials
having ¢ as its zero. Then, ¢(z) = Y1 | h(c;)z" € Qz]. Also Q[z]/(¢(z)) = Q(c) is a field from the
basic fact about Field extension. Since (2 is algebraically closed, 2(c) = Q. Hence,

p:Cla] & Qa] = Qfa]/(6(x) = Q
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5.

is a homomorphism with a kernel (>_;" ¢;z%), and it is extension of h. Thus induce an injection
n
C[x]/(z cix') — Q.
i=1

Since Clz]/ (31, ciz’) = C[b] as a ring, (since b satisfies > ., ¢;z") this induces an injection from
C[b] to Q2 extending h. Since C[b] is strictly bigger than C, it contradicts maximality of (C,h). Hence
C =B.

Let b®c € B'@C. Then, since B’ is integral over f(B), 3_7_, bt/ = 0 for some b; € f(B). Hence,
A

(zt:?:l bjb’) @ ¢ = 0, which implies that (37_, b;jb/) @ ¢" = 0 by acting ¢~ on 0. From this we can
ge

O b ) (bc) =0.
j=1

Thus, b ® c is integral over f ® 1(B ) C) since each coefficient is in the image. By definition of tensor
A

product, every elements in the tensor product is finite sum of basic elements of a form b ® ¢, thus
B' @ C is integral over B C with respect to f ® 1.
A A

No. Suppose char k # 2, let B = k[z], A = k[z? — 1], then B is integral over A since f(y) = y> —1—
(r? — 1) is a polynomial over A having x as its zero. Let n = (z — 1) be a maximal ideal of B. Now
1/(x 4 1) is an element in By, since z + 1 ¢ n. If it is integral over Ay, where m =nnN A4 = (22 — 1),
then

S (D +nT =0

— S5

7j=1

for some a;/s; € Aw with a, = 1. By multiplying (z + 1) on each side of fraction we can assume that
Do aj(z+ Ikl

sj(e+1)"
for different a;’s. Since B is integral domain, a,t, + Z;l;ll ajtj(z+1)"I = > agty(z + "7 =0
in B where t; = [[,; s; by multiplying (z +1)" [[j_, s;. Since s; € A\ m, t; € A\ (2 — 1), thus

(x+1) divides Z;le ajtj(x+1)"7J. This implies that a,t, € (x4 1) C B. And since we assume that
a, = 1, this implies t,, € (z + 1). Also, since t,, € A, t, € (x + 1) N A = (2% — 1), contradiction since
A — (2% — 1) is multiplicatively closed.

(a) Since 2=t € B, then 0 = Y_" n-1

=1 ajx_j with a; € A, a, = 1. Hence by multiplying z"~", we get

n—1
a7+ E ajz" 17 =0
=1

thus 27! is linear combination of z* over A. Hence, it is in A.

(b) Let max(A) be a collection of all maximal ideals of A. Then, for any m € max(A), Theorem 5.10
implies that In € Spec(B) such that nN A = m. By Corollary 5.8, n is also a maximal ideal.
Conversely, if n € max(B) is a maximal ideal of B, then nN A # A since 1 is not in n, thus it is
proper subideal of A (since n N A = n°) therefore it is maximal by Corollary 5.8. Thus, we can
conclude that

Claim XXXI. If A C B be rings and B is integral over A, then max(B) and max(A) has 1-1
correspondence given by extension and contraction.
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6.

8.

9.

Hence, if we denote R 4,Rp be the Jacobson radical of A and B respectively, then,

Ra = ﬂ m= ﬂ nNA=AnN ﬂ n| =ANARpz.

meEmax(A) nemax(B) nemax(B)

Let (b1, ,b,) € [, B;. Then, for each b;, there exists a monic polynomial

n;—1

filz) =a™ + Z aj;x? = 0.

j=1
having b; as zero. Thus, let f(z) = [[;—, fi(z). Then, f(z) is monic and has by, - , b, as its solutions.
Now we can rewrite f = Z;n:l ajz? with a, = 1. Now, notes that multiplication in [] ; B; is
coordinatewise multiplication (thinking a; as scalar.) Thus, we can replace x of f(z) with (b1, -+ ,by).
Then,

for, -5 bn) = (f(b1), -+, f(bn)) = (0, ,0)

and (0,---,0) is zero in []"_; B;. Thus, (b1, - ,by) is integral over A, and was arbitrarily chosen,
thus []7"_, B; is an integral A-algebra.

Let b € B be an element integral over A. Then, it has a monic polynomial f(z) = z" + Z;le aj:rj
such that f(b) =0 and a; € A. Since f(b) =0 and ag € A, b" + a,_1b""' -+ a;b € A. Since B\ A
is multiplicatively closed, either b € A or b" ' 4+ a,_1b" 2 +---4+a; € A. If b € A, done, otherwise,
since a; € A thus b(b" "2 + --- + az) € A thus either b or b"~2 + .- + ay € A. Iterating this process,
we can arrive that b+ a,,_1 € A, thus b € A.

(a) Let Kp be a field of fraction of B, let {2 be an algebraic closure of Kg. Then, f,g € Kp[x] split
into linear factors on Qz], say f =][;(z —&),9 = [[;(z —n;). Then, each ¢ and n; are integral
over C' since they have a monic polynomial fg € C[z]. Thus, by Viete’s theorem, each coefficients
of f and ¢ is integral over C. Also, by the transitivity of integral dependence, all coeflicients of f
and g are integral over A. Since these coefficients are in B, thus they lie in C since C is integral

closure of A. Hence, f,g € C|z].

(b) For the second claim, all we need to do is to show that there exists an extension ring D containing
B containing all §; and 7; so that f, g split into linear factors in D[x]. Then by applying the same
argument, we are done.

To see this, it suffices to show below claim

Claim XXXII. For any ring B and f € B[x] monic, there exists a ring D such that D 2 B and
f can be factorized as a product of degree one monic polynomial.

Proof. Use induction. If deg(f) = 1, done, since every solution is in B. If deg(f) > 1, then
let Dy = Blz]/(f(z)) where (f(x)) is a principal ideal of B[x] generated by f(z). Then for
any h(z) € Blz], let h(z) be a coset in D; containing h(z). Then we can embed B onto D
by b +— b. Thus, we can identify B as a subring of D;. Also, in D, Z is a root of f. Thus,
D [t] — Di[t]/(t — Z) is surjective ring homomorphism whose kernel contains (f(t)), since f(t)
mapped into f(t) = f(T) = f(T) = 0. Since kernel itself is (¢ — T), thus there exists fi(¢) such
that f1(t)(t — =) = f(t). Hence, deg(f1) < deg(f), by inductive hypothesis, there exists D, an
extension of D such that fi(x) splits into linear factors in D[z]. Hence, f as a polynomial in

Dix], f splits into linear factors in D[z] and D contains B, done. O

If f € B[] is integral over A[z], then
fm+glfm71+"'+g7n =0

for some g; € A[z],m € N. Let r be an integer larger than m and the degrees of g; for all i. Let
fi=f—2a". Then,
(fi+a)" + o (fi +2")" 4 4 g =0
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Then by expanding all products, we can say that

A+ 4 by =0

where hy, = (7)™ 4+ g1(2")™ " + - g € Alz]. Thus, f7* +hifl" 4+ Fhmafi = A+
hifl" 244 hy_1) € Alz]. By Exercise 5.8, this implies that f; € C[z]. Hence, f = f1 + 2" € Cl[x].

(a)

(a) — (b): As we did in the proof of Exercise 5.1, we can factor out the map f* as

AL f(A) S B = Spec(B) s Spec(f(A)) = Spec(A).

Then, f* closed if and only if of s* is closed, since r* is already closed as a homeomorphism
(Exercise 1.21 iv)) of Spec(f(A)) = V(ker(f)). Thus, we can just assume that A C B with
f=1i:A— B be an inclusion map.

To see f has going-up property, it suffices to show that if there exists chain of prime ideals
p1 € p2 in A and q; is a prime ideal of B such that p; = g1 N A, then Jqo € Spec(B) such that
g2 N A = py. Notes that in this case we do not assume that B is integral over A. Instead, we
assume that f : A — B an inclusion induces a closed mapping f* : Spec(B) — Spec(A). Also,
this is equivalent to saying that f*[y(q,) : V(q1) — V(p1) is surjective map. (Notes that the
contraction of any prime ideal containing q; contains p;, thus domain and codomain of this map
is well-defined.)

Now, since V(q1) is closed, f*(V(q1)) is closed set containing f*(¢1) = ¢t N A = p1. Hence,
f*(V(q1)) 2 {p1}, a closure of {p1}. Since {p1} = V(p) by Exercise 1.18 ii), f*(V(q1)) 2 V(p).
Thus, the map f* is surjective.

(b) <= (c): Notes that f*|y(q,) : V(q1) — V(p1) is identified by the map 7" : Spec(B/q1) —
Spec(A/p1) comes from f: A/p — B/q, by Exercise 3.21, iii). Thus, if (c) holds, then by letting
p=yp1; and q = ¢y in (c), f* : Spec(B/q1) — Spec(A/p1) is surjective, thus by Exercise 3.21, iii),
T V(g : V(q1) = V(p1) is surjective, hence (a) holds, which implies (b).

Conversely, if (b) holds, then f*|y(q,) : V(q1) — V(p1) is surjective as we've seen above for

arbitrary choice of q;. Thus, by Exercise 3.21 iii), 7 Spec(B/q1) — Spec(A/p1) is surjective for
any g in Spec(B). This implies (c).

As we did in the proof of Exercise 5.1, we can factor out the map f* as

AT f(A) S B = Spec(B) s Spec(f(A)) s Spec(A).

Then, f* open if and only if of s* is open, since * is already open as a homeomorphism (Exercise
1.21 iv)) of Spec(f(A)) = V (ker(f)). Thus, we can just assume that A C B with f=4i: A — B
be an inclusion map.

We claim that

Claim XXXIII. Ifp’ Cp e U for some Zariski open set U of Spec(A), then p’ € U.

Proof. U°¢ is closed set, thus if p’ € C then p’ C C, thus p’ = V(p’) C C by Exercise 1.18 ii).
Hence, p € C, contradiction. O

Now we will show (¢/) = (¢/) and (V') <= (¢). This is equivalent to saying that (a/) =
(V) = ().
(a") — (¢): By Exercise 3.23, from the construction of presheaf, we know that ligqu B(U) = By,

where U is an open sets in the Zariski topology of Spec(B) containing q. If we define Sq = B —p
as a poset such that f < g iff X; C Xy, then we can redefine presheaf A from topology of Spec(B)
to ring as presheaf from Sq; = B — q to ring from the map sending f to X;. Thus, we can rewrite
B, as

lim B; = B,.

—
tes
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Hence
frSpec(By) = [ [SpecB)) =[] (X

Exercise 3.26 t€S, Exercise 3.21 i) t€Sq

Since f* is open map and X is an open neighborhoods of q for any f, f*(Xy) is an open
neighborhood of p = f*(q). Hence, by Exercise 3.22,f*(X;) contains the canonical image of
Spec(A;) in Spec(A) for all f. Thus f*(Spec(B,) contains Spec(A,). Conversely, for any q' €
Spec(By) C Spec(B), q' C q thus f*(q") C f*(q) = p, thus f*(q’) € Spec(A, as the canonical
image in Spec(A), by Proposition 3.11 iv). Hence, f*(Spec(Bq) C Spec(Ay). Thus, f*|spec(B, 18
surjective map.

(/) < (c’): Suppose () holds. Let p; = q1 N A for some prime ideal q; in B. Then, f* :
Spec(Bq,) — Spec(A,, is surjective. Thus, for any ps C p1, p2 € Spec(Ay, , hence g2 € Spec(By,)
such that g2 N A = f*(q2) = p2. Conversely, suppose (b’) holds. Then, for any prime ideal q
of B, with p = q°, think a map f* : Spec(B,) — Spec(4;). First of all, it is well-defined since
for any q" € Spec(By), q' C q, thus f*(q') € f*(q) = p, hence f*(q') € Spec(A4;). Also, for any
p’ Cp, p’ € Spec(A4;). Going-down property implies that 3q" C q (which implies q' € Spec(By))
such that ¢ N A = p’ € Spec(By), hence f*(q') = p’. Thus, f* is surjective map. Since q was
arbitrarily chosen, we can conclude that (¢’) holds.

By Exercise 3.18, (¢’) holds. Thus by Exercise 5.10 ii), (b’) holds.

A% is a subring of A, since 1 € A% (every automorphism preserves 1) and if a,b € A®, then ab,a —b €
A% by homomorphic property. Thus, A is closed under subtraction and multiplication. (This is
criteria for subring.)

If + € A, notes that f(t) =[], co(t — o(x)) has x as a solution since G has identity morphism. Now
all coefficients of f(t) are in A“, since it is symmetric polynomial of o(x) for all ¢ € G, thus it is in
A% Also, f is monic. Hence, z is integral over A®. Since z is arbitrary, done.

For the second statement, define action of ¢ € G on S7'A as o(a/s) = o(a)/o(s). It is well-defined
since if a/s = b/t, then there exists ¢ € S such that gta = gbs. This implies o(q)o(t)o(s) = o(qta) =
a(qbs) = a(q)o(b)a(s). Hence o(a)/o(s) = a(b)/a(t). Now let (S71A)¢ be a subring of G-invariants.
To see it is isomorphic to (S¢) =1 A, first of all, we can see (S¢) "1 A® as an embedded subring of S™1 A.
Also, notes that for any a/s € (S9)"tA%, o(a/s) = o(a)/o(s) = a/s, thus (SF)"LAE C (S7TA)C,
Lastly, if a/s € (S~*A)Y, then o(a/s) = a/s. Now, let s := [l,cc—{15y 0(s). Then, ss’ € A%, Hence,
a/s-ss'/1=uas'/1 € (S™1A)Y. Now for each o € G,

o(as’/1) = as'/1
Hence 3t, € S such that
teo(as’) = tyas’.

Now let t = H'yeG('V(HaeG t,)). This is in S¢ since applying any automorphism on ¢ is just permu-
tation of product. Since t, contained in ¢ as a divisor,

o(tas’) = to(as’) = tas'.

Hence, tas’ € AS. Thus,
a/s =ts'a/ts's € (S¢)71AC,

done,

Let q,q" € P. Then, take z € q, t = [[, g0 ' (). Then, t € A% Nq=p Cq since t is product of =
with some others. Since g’ is prime, at least one y = o~ 1(x) should lie in q’. Hence, o(y) = x, which
implies that « € o(q’). Since 2 was chosen arbitrarily, g C |J,c 0(q"). Since o is autormophism, o(q’)
is still prime ideals for any o € G, thus by Proposition 1.11 i), ¢ C v(q’) for some . Since

(@) N A =~(q) N (A9) = Y(aNAY) =~(p) =p,

since o is automorphism
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Corollary 5.9 says that q = v(q’). Thus, first of all, from the arbitrariness of q and q’ G sends elements
in P to another elements in P. And, definitely, 1¢ preserves g, and satisfies group action axioms. (For
the composition, notes that acting on P is just action on A, and in this case composition axiom holds.)
Finally, G transitively acts on P, i.e., for any two q,q" € P, there exists v € G such that v(q) = y(p’),
by above result. To see P is finite, notes that just action of G on P has only one orbit; P itself. By
the orbit-stabilizer theorem,

[P| = |G|/|Stab(q)| < |G| < oo.

For any b € B, b is integral over A, i.e.,
n
Z ajbj =0
j=1

for some a; € A with a,, = 1. Choose o € G. Then,

0=0(0)=>_a;o(b)

=1

since o fixes K O A. Hence, o(b) is integral over A%, thus o(b) € B. This implies o(B) C B.

Conversely, by replacing o to o=! we can get o~!(B) C B. Hence, B = o(c7'(B)) C o(B). (This
comes from the fact that every field homomorphism is injective.) Since o was arbitrarily chosen,
o(B) = B for all 0 € G.

To see A = B%, notes that
BY=BNL°=BNK=A

since B¢ C LY and K is fixed field of G in Galois theory, and B is integral closure of A in K.

As hint suggested, we can assume that L is separable over K or purely inseparable over K, since every
algebraic extension can be decomposed with a separable extension Ly over K and purely inseparable
extension L over Ly [2J[Theorem 6.6 in V. §6.]. Thus, if we show this Exercise in two cases, then
Spec(B) — Spec(By) — Spec(A) has finite fiber, where By is integral closure of A on Ly.

So suppose that L is separable over K. Then, using|2|[Corollary 1.6 in VI. §1.], there exists L’ which is
finite Galois over K, i.e., finite normal separable extension over K containing L. Let C be an integral
closure of A in L’. Then, C contains B. and by transitivity of integral dependence, C is integral over
B. Now, let P = {q € Spec(B) : qN A = p}. Then, by Theorem 5.10, for each q € P, 3q’ € Spec(C)
such that ¢'N B = q. Thus, if we let P’ = {q’ € Spec(C) : ¢’ N B € P}, then for any ¢’ € P/, ¢ NA = p.
However, by letting G = Gal(L’/K), which is finite group, we know that A = C“ by Exercise 5.14.
Thus, by Exercise 5.13, P’ is finite. Since |P’| > |P| by Theorem 5.10, P is finite. Done.

Suppose L be a purely inseparable over K. By [2|[p.249, P. Ins. 3], for any = € L, 2?" € K
for some m € N where p = char K. If ¢° = qN A = p, then for any = € ¢°, 2P € K. Thus,
w?" € qN K C BNK = A, since A is integrally closed (in K.) Thus, 27" € qN A = p. Thus, if we
let ¢ := {x € B:2P" € p for some m € N}, then q C q’. Conversely, if x € q/, then, 27" € p C q for
some m € N, and since q is prime, x € q. Thus, g = q’. Now to see a bijection Spec(B) — Spec(A),
for any p € Spec(A), define q := {z € B : 2P" € p for some m € N}. Then, for any z,y € q, 2" € p,
yP" € p for some m,n € N, thus

max(m,n) max(m,n) max(m,n)

(+yp™ " = @

Hence q is closed under addition. Also, for any b € B, it has n € N such that ¥*" € K N B = A, thus

+ 9P ) Ep.

max(m,n) max(m,n)  max(m,n)

(bx)P =0’ xP €p
thus q is ideal. To see it is prime, if zy € q, with 2?",y?" € K N A = B with (my)”l € p, then take
q = mnl. Then

(xy)pq = a:pqypq € p with zpq,ypq € A.
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Since p is prime, either 2P* or y?* € p, thus either x or y in g by construction.

Thus, for any p € Spec(A), there exists q € Spec(B) such that g A = p. Hence, f* : Spec(B) —
Spec(A) is surjective. Also, it is injective since if N A =g’ N A = p for some q,q" € Spec(B), then by
above argument, both ¢ and ¢’ contains a prime ideal q” = {z € B : 2P" € p for some n € N}, then by
Corollary 5.9, ¢’ = q” = q. This shows that f* is injective. Thus, f* is bijectively continuous.

Now we can claim that

Claim XXXIV. Let A be an integrally closed domain, K its field of fraction and L a finite purely
inseparable extension field of K. Let B be the integral closure of A in L. Then, f* : Spec(B) — Spec(A)
induced by the canonical inclusion f: A — B is homeomorphism.

Proof. By above argument, we know that f* is bijectively continuous map. By Exercise 5.1, f* is
closed map. Thus from the topological fact that bijectively continuous map is homeomorphism if and
only if it is closed map, f* is homeomorphism. O

Thus, any fiber is singleton, i.e., finite.
This problem want us to show that

Lemma Noether’s normalization lemma. Let k be a field and let A # 0 be a finitely generated
k-algebra. Then there exist elements y1,--- ,y, € A which are algebraically independent over k and
such that A is integral over klyy,--- ,yr].

To prove this, we need to distinguish a case when k is infinite and k is finite.

(a) Suppose k is infinite. By definition of finitely generated algebra, there exists a surjective k-
module homomorphism (i.e., linear transformation) ¢ : k[zy,- - ,z,] — A which is onto. (Thus,
just identify ¢(x;) with x; for economy of notation.) We can renumber the z; so that zq, -+, z,
are algebraically independent over k and each of 41, - , x,, is algebraic over k[x1, - ,z,]. Now
proceed induction. If n = r, done. Suppose n > r and the result is true for n — 1 generators.
Since x,, is algebraic over k[zy,---,xz,], there exists a polynomial f # 0 in n variables such
that f(x1,---,2,) = 0. Let F be the homogeneous part of highest degree in f, i.e, if we let
f= ZjM:O fj(x1, -+ ,x,) where f; is homogeneous of degree j, then F := fj;. Since k is infinite,
there exists Ap,---,An—1 € k such that F(Ay, -+ ,Ap—1,1) # 0. (To see this, notes that F' =
Z;-Vio g;xl, for some g; € k[xq, -+ ,xn_1] which is homogeneous of degree M — j respectively.
Thus, G(z1, -+ ,&p-1) := F(x1, -+ ,xp_1,1) = ij\io g; is nonzero if F' is nonzero. Therefore,
Z(G) # k™1, since only polynomial having k"~! as a solution set is zero polynomial, by below
Claim [XXXV] Thus we can find such lambdas.) Put # = z; — A\;z,, for i € [n — 1]. Then, if we

— «@ @ n o7
let F'=3 enn jajom Ca®” where 2% = [[}L; 7",
n n—1
F= E car® = E Ca Hx;’” = E Calom™ H (2] + N ).
aeN™ |a|l=m aeN? Ja|l=m =1 aeN™ |a|l=m i=1
Hence, coefficients of 3% ¥ in F is F(A,---,A,_1,1) # 0. (To see this, notes that \;x, term

e 23

has a power ay, so that it gives a form H?zl x7" in F' changed with z; = A;.) Hence, by letting
C=F(\, - ,A\—1,1) and dividing f(z] + A1, -+ ,2),_1 + An_1,2,) by C, we can get a monic
polynomial with respect to z,. (Since F' is the highest degree part of f thus dividing by C gives
monic term x98 ¥ which is the highest term in f(z} + A1, ,2,_; + A_1,2,). Thus, f(z} +
ALy @1+ An—1,Tn) = 0 (since we set x; = =}, — \;x,,), and we can think f(z]+A1, - 2, _1+
An—1,Ty) as an element in k[z},--- ,2),_4][zn]. Hence, z,, is integral over A’ := k[z}, -+, 2], _4].
This implies that A is integral over A’[z,], therefore by transitivity of integral dependence, A is
integral over A’. Hence by the inductive hypothesis, A’ has an elements yi,--- ,y,. € A’ which
are algebraically independent over k and such that A’ is integral over k[yi,--- ,y,]. Since A is
integral over A’, hence by the transitivity of integral dependence, A is integral over k[y1, -+, yr]-

Done.
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Claim XXXV. A polynomial function g : k™ — k is zero if and only if g =0 € klx1,- -+, 2y]

Proof. If n =1, done. Suppose it holds for n—1 and g : k™ — k be a polynomial having kernel k£".
Then, g € k[zy, -+ ,2p_1][zy], thus g = ZT:l g;jxl, for some polynomials g; € klz1, -+, 2,-1].
Then for any a € k, g(21,-++ ,2n_1,0) = go is polynomial in k[xy,--- ,2,_1] sending all k"1 to
0, thus go = 0 by inductive hypothesis. Now, think g/z,,, which is still polynomial and whose con-
stant part is g;. Then, for any a # 0, g(z1,- - ,Zn-1,a)/a = 0/a = 0 implies g1 (z1, -+ ,Zp—1) =0
for all k"~!'. Thus g; = 0 by inductive hypothesis. By doing this argument iteratively, we can
get g = gma™, thus 0 = (g/2™) (21, ,Tp-1,a) = gm(x1, - Tp_1) for any k"1 implies g,, = 0,
hence g = 0. O

(b) We refer proof of [5]. Suppose k is finite. Then, by definition of finitely generated algebra, there
exists a surjective k-module homomorphism (i.e., linear transformation) ¢ : klxy, -+ ,x,] = A
which is onto. (Thus, just identify ¢(z;) with x; for economy of notation.) We can renumber the
x; so that x1,--- ,x, are algebraically independent over k and each of z, 1, -+ ,x, is algebraic
over k[zy, - ,x,]. Now proceed induction. If n = r, done. Suppose n > r and the result is true
for n — 1 generators. Since x,, is algebraic over k[z1,-- - ,xy,], there exists a polynomial f # 0 in
n variables such that f(z1,---,2,) =0.

Let d > deg f, and 2}, = x; — 2 for i = 1,--- ,n — 1. Then, by letting g(z},--- , 2/, |, z,) :=
flzy + xﬁl, el g+ xﬁnil,xn) =0, Then if f =" yn caz®, then each monomial in g has a

1 i . .
form ¢, [T/, (@} + 28" )*. Thus, its pure power term of z,, has an exponential

n—1
oy, E o;d.
i=1

Since d chosen larger than any «;, each a has distinct pure power term of z,. Let 8 be the
exponent such that whose pure power term of z,, is the greatest. Then, dividing g by cg, we can

get a monic polynomial of z,, over A" = k[z},---,a],_4]. Thus, z, is integral oveer A’, and by
inductive hypothesis, A’ is integral over k[y, - - , y,] for some algebraically independent elements
yi, hence A’[x,] is integral over kly,- - ,y,], and since A’[z,] = A, done.

Notes that the second statement of this lemma only holds for when & is infinite, or, at least, I don’t
know whether it holds when k is finite.

For the second statement, notes that in case of r = n—1, then y; = } is chosen as a linear combination.
By applying this more and more, we can see that all y1,- - ,y, are chosen to be linear combination of
L1, Tn-

To find out linear projection 7 : k™ — k" such that
XS5k S L2k

is surjective map, we can use Exercise 1.28. It suffices to show that there exists a k-algebra homomor-
phism 7* : P(k") = k[y1,- - ,yr] = P(E™) = k[x1,- -+ ,x,] such that

H# *
k[l‘l,"' ,.’I}n]/I(X) <L— k’[l‘]_,"' 7xn] — k[yla 7yr]

and its corresponding regular map X — k™ — L is surjective.

Now, from the Noether’s normalization lemma, we have ¢, - - - , ¢, be algebraically independent elements
in A, and an inclusion map ¢* : k[y1, - ,yr] = A by y; — t;. Moreover, as we observed above, these
t; is linear combination of Z;s in A, i.e.,

n
ti: E aijaTj.
j=1
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17.

Thus, we can factor through this map ¢* by 7* and ¢* by letting
n
™ klyr, -, yr] = kg, xn] by yi — Zaijmj for some a;; € k.
j=1

. e . . . - =r T _ = —
Then, since ¢* is just canonical map for quotient ring, * o7* sends y; to ijl a;jx; = ijl a;;T; = t;.
Thus, ¢* = 1* o7*.

Now we can derive m which induces 7* by letting
n n
T k™ = L by (vi,--- ) — (Zaljvj,~-- ,Zarjvj).
j=1 j=1
To check that 7* = () o, for any polynomial g(y1, - ,¥r),
n n
gom(ti, -+ tn) =g ayty, -, > art;) =7 (g).
j=1 j=1

Thus, we can deduce ¢ by ¢ = mo¢. Now, we need to show that this ¢ is surjective.

To see ¢ is surjective, notes that ¢* is injection; if g, ¢’ € k[y1,--- ,yn] has a property that ¢*(g) =
¢*(g'), then
g(th e 7tn) = g/(th e 7tn)

If g # ¢, then this induces a nonzero polynomial whose solution is #;s, which contradicts the assumption
of algebraic independence of t;s. Hence g = ¢’ in k[y1, - ,yr].

Now fix v € L. Then, {v} is a variety (defined by zero set of f,(¢) := ¥ — v) , thus canonical inclusion
py induces a map p¥ : P(L) & kly1,--- ,yr] = P({v}) & k by sending g to its evaluation at v, i.e.,
g(v). (This is because k[y1,- - ,yn]/(y1 —v1, -+ ,yr — ;) is a field and its canonical map is evaluation.)
From the injection ¢*, we can think k[y1,---,y,] is a subring of A (as k[t1,--- ,t,]) such that A is
integral over k[yi,- - ,y;]. Then define

(¢)~" o
Py k[t et CA " kly1,- -,y =2 k.

Since k is algebraically closed, p;‘j*l extends to a homomorphism pf// : A — k by Exercise 5.2. Hence
by Exercise 1.28, 1-1 correspondence gives a function g, : {v} — X. From

py = pyo(¢*)h,

Py ot =pi = py 00" =pi.
Hence,
$ 0 Py = py.
This means that for any v € L, the canonical injection {v} — L factor through X, i.e., {v} — L is

equal to {v} = X — L. Now to see ¢ is surjective, pick v € L. Then, by this factor through map,
pv(v) € X such that ¢(p,(v)) = v. Hence, ¢ is onto map.

To see that X is not empty, let A = k[t1,--- ,t,]/I(X) be the coordinate ring of X. Then, A # 0, hence
by Exercise 5.16 there exists a linear subspace L of dimension greater than 0 in k™ and a mapping of
X onto L. Hence X # (). The author call it weak form of Nullstellensatz.

For the second statement, let m be a maximal ideal. Then, A = k[t,--- ,t,]/m is not only field, but also
finitely generated k-algebra. Thus, by Noether normalization lemma, A has algebraically independent
elements y1,--- ,y, such that A is integral over a subalgebra k[yi,--- ,y,]. However, since A is field,
thus if r > 1, then any two elements are algebraically dependent. Hence, just pick f € k[t1, -+ ,t,]
such that f = 1, and let y; := f. Then, the lemma says that A is integral over k[f] = k. Also notes that
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A is a field containing k. But since k is algebraically closed, any algebraic extension of k is contained
in itself, thus A is also contained in k. This implies K = A. Thus, we have a canonical projection map
7w k[t ty]) = A= K. Then, let a; = w(t;). Then, (¢ — a1, -+ ,tn, — an) C kerm = m. If we show
(ty —ay, -+ ,t, —ap) is maximal, then done.

Claim XXXVI. For any field k, an ideal of form (t; — a1, - ,tn — ap) in k[t1,-- - , t] is mazimal.

Proof. Let ¢ : k[t1, -+ ,tn] by t; — t; + a;. Then, ¢ is well-defined endomorphism since it sends
1 to 1 and additivity and multiplicativity holds by construction. Also, it is automorphism since
d(xz*) = x* 4+ some other terms when o # 0 € N*. Thus, (¢t —a1, - ,t, — a,) is maximal if and only
ifo((tr—a1, - ,th—an)) = (t1,- -+, t,) is maximal. But it is maximal since by a map k[t1, - ,t,] — k
sending f +— f(0,---,0), its kernel contains (z1,-- ,2,) and if f € ker, then f has zero constant, thus
f=0or f consists of degree at least 1 monomials, which are elements in (z1,-- ,zp). O

This is called Zariski’s lemma.

Let z1, - ,z, generate B as a k-algebra. If n = 1, then z; has an inverse in B, thus xl_l can be

denoted as a polynomial of x;, i.e., xl_l = Z;”:l cjm{. Thus, (Z;nzl cja:jﬁl) —1=0. Hence, z; is a
solution of a polynomial in A[z], thus it is algebraic over A.

So assume n > 1. Let A = k[z1] and K = k(z1) be the field of fraction of A. By the inductive
hypothesis, B can be regarded as a finitely generated K-algebra with n—1 case, so B is a finite algebraic
extension of K. Hence each of zo,--- ,z, satisfies a monic polynomial equation with coefficients in
K, i.e., coefficients of the form a/b where a,b € A. If f is the product of denominators of all these
coefficients, then each of s, -,y is integral over Ay. Hence B is integral over Ay since any element
in B is generated by x1, %2, -+ ,%,. Since K C B, K is also integral over Ay.

Now suppose that x; is transcendental over k. Then, A is integrally closed since A is UFD and below
claim.

Claim XXXVII. If A is UFD, then it is integrally closed, i.e., its integral closure in its field of
fraction is itself.

Proof. Any elements in the field of fraction of A can be denoted as a/b where there is no irreducibles
of A dividing both a and b simultaneously. Thus, if a/b are integral over A, then by multiplying b™ we
can get kind of equation

a®+cia® b+ 4 b = 0.

Thus, a” = —(c1a™ b+ - - - + ¢,b") is divisible by b, hence a™ is divisible by b. Since no irreducible of
A divides both a and b, this implies that b is unit in A. Hence, a/b=ab~! € A. O
Hence, Ay is integrally closed by Proposition 5.12, therefore Ay = Ky = K since K is integral over A.

However, it is not possible by below lemma.

Lemma N. o polynomial ring klxz] has an element f € k[z] such that k[z]s is a nontrivial field.

Proof. 1f it has such f. Then, f & k, since a/f™ € k[z]; is equal to af~™/1, thus k[x]; = k[z]. Thus,
deg f > 0, which implies 1 — f # 0. Since k[z]f is a field, (1 — f)~! is in k[z]f, hence (1 — f)~t = g/f™
for some m € N. This implies that f™ = (1 — f)g in k[z] Then, in a ring k[z]/(1 — f),

l=f=f"=(1-f)g=0modulo (1— f)
Thus, k[z]s/(1 — f) = 0, which implies that 1 — f is unit in k[z]. However, since deg(1 — f) > 0, its

leading coefficient should be nilpotent by Exercise 1.2 i). However k contains no nilpotent other than
0, contradiction. O]

Thus, x; is algebraic over k. Hence A = k[z1] is integral over k, thus K and B are integral over k by
transitivity of integral dependence. Since k is field, it means that K and B are finite extension of k.
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20.

21.

22.

Given k be algebraically closed field, let m be a maximal ideal in k[t1,--- ,t,]. Let B = k[ty,--- ,t,]/m.
Then, B is both a finitely generated k-algebra and a field. By Exercise 5.18, B is a finite algebraic
extension of k. Since k is algebraically closed, B = k. Thus, let a; = t;. Then, t; — a; € m for all 4, this
implies m contains (t1—aq, -+ ,t,—ay). By Claim it is maximal, thus m = (t1—aq, -+ ,t,—ay).
Hence, every maximal ideal in the given ring is of the form (t; — a1, - ,t, — ayn).

Before starting this, we observe a very basic facts in localization.

Claim XXXVIIL. If B is a finite (or finitely generated, resp.) A-algebra, and S is a multiplicative
subset of A, then ST1B is a finite (or finitely generated, resp.) S~ A-algebra.

Proof. If B is finite A-algebra, then B is finitely generated as an A-module, thus B has a set of
generators {by, -+ ,b,}. Then, any elements in b can be denoted as b = 2?21 a;b; for some a; € A.

Thus, any element in S~ B can be denoted as b/s = Y7, aib;/s = > 7_(a;/s)(b;/1). Thus, S~'B is
also finitely generated as an S~!A-module.

Similarly, if B is finitely generated A-algebra, then there exists x1,- - - , x,, such that every elements b in
B can be written as polynomial of z1, - - - , 2, over f(A) where f : A — B be aring map defining algebra

structure. Thus, if b = f(x1, -, 2n) = > cnn f(aa)z®, then b/ f(s) = > cnn faa)/ f(s)(x*/1), thus
it is polynomial of z1/1,--- ,z, /1 over f(S™'A). Thus, S~!B is a finitely generated S~! A-algebra. [

Let S = A — {0} and let K = S~'A, the field of fraction of A. Then, S~!B is a finitely generated
K-algebra by above claim. Thus, by Exercise 5.16, there exists y1/s1, -+ ,Yn/sn in S™1 B algebraically

independent over K and such that S~ B is integral over K[y;/s1, - ,Yn/Sn]. Let z1,- -+ , 2, generate
B as an A-algebra. (Such z;s exist since B is finitely generated A-algebra.) Then, each z;/1 € S™'B
is integral over K[y1/81, - ,Yn/Sn]. This implies that there exists a monic polynomial

l
filz) == Z aijxj
i=1

such that f;(z;/1) = 0. where a;; € Kly1/s1,--- ,Yn/sn]. Now, notes that a;; is of form a;; =

>aenn Cigr®/s®. Thus, let den(aij) = [[,cnn 5% andlet s =[], ; den(a;;). Then, sa;; = 3_, cyn (si5/5%)2®

with sc;;/s* € A. Thus, sa;; € B' := Afy1,--- ,yn] for any ¢,j. (Notes that yq,---,y, is al-
gebraically independent, otherwise there is some polynomial of yy,--- ,y, which equals zero, so by
replacing y; to $; - y;/s;, we can get y1/s1,--- ,yn/Sn are not algebraically independent, contradic-
tion.) Thus, sf; € B’[zx], which implies that sf; € B.[z], therefore f; € B.[x] for each i, where
B ={1,s,8% - }7'B' ={1,s,52 --- } Y Aly1, - ,yn]. This shows that z;/1 is integral over B’. Since
B is generated by z; over A, Bs = {1,s,s%,---}71B is generated by {z;/1}™; over {1,s,5% ---}71A
over ST1A. Also, since {z;/1}™ is integral over B! and By contains B’ (since y; are in B, thus it can
be embedded into y;/1) this implies that B; is integral over BZ.

Use the same notation as in Exercise 5.20. Notes that s # 0 since s € A\ {0}. Thus, by universal
property of localization (Proposition 3.1), f extends to the unique map fs : As — Q. Now, B, =
Asly1, -+ ,yn]. Thus, by sending y; to 0, we can extend fs to f. : B, — Q. (It is trivially ring
homomorphism.) Now, since B is integral over B, by Exercise 5.2, we can extend f! to g : B; — (.

Now using the canonical map h : B — By, we can extend it to ¢ : B — Q by ¢ =go h.

Use the same notation as in Exercise 5.20. Let v # 0 be an element of B. It suffices to show that
there is a maximal ideal of B which does not contain v. Notes that B, = B[1/v] is a finitely generated
B-algebra, and B is finitely generated A-algebra, thus B, is finitely generated A algebra. (Just as
polynomial ring over polynomial ring is polynomial ring.) Thus B, contains A as an action of a € A
on 1 € B,. Thus, by applying Exercise 5.21 to the ring B, and its subring A, we obtain s # 0 € A
such that if  is an algebriacally closed field and f : A — Q is homomorphism for which f(s) # 0, then
f can be extended to a homomorphism B, — 2. Now let m be a maximal ideal of A such that s # m.
(This is possible since Jacobson radical of A is zero, thus intersection of all maximal ideals is zero.)
Let k = A/m. Then, the canonical map f: A — k extends to a map f: A — Q, such that f(s) # 0.
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Hence, f extends to a homomorphism g : B, — Q. Now, since v/1 is unit in B,, g(v/1) is also unit in
Q, thus g(v/1) # 0.

To see ker(g) N B is maximal, notes that ker(g) N A = m is maximal ideal of A. Thus,
k=A/m < B,/ker(g) < Q.

By below claim, we can see that B,/ker(g) is a field. Hence ker(g) is a maximal ideal in B,. Hence,
its contraction ker(g) N B is a maximal ideal in B.

Claim XXXIX. Let k be a field and €2 be an algebraic extension of k. Then any subring E containing
k and contained in 2 is field.

Proof. Let b # 0 € E. Then, b=! € Q. Since € is an algebraic extension of k, there is a polyomial
[ € k[z] such that f(b=1) = > a;jb™7 =0 with a; € k. (Also since k is a field, we can assume that
f is monic.) Now, multiply 4”71 to get b=! = — ;:11 a;jb"~17J € E. Hence, every nonzero elements

in F is unit. So E is a field. ]

i) = ii): Let f: A — B be a ring homomorphism. Then f(A) is a homomorphic image, thus f
induces a map A — f(A). Thus, assume that B = f(A), i.e., f is surjective homomorphism. Then,
B = A/ ker f, thus by Proposition 1.1, every prime ideal of B is extension of prime ideal in A containing
ker f. Hence, the contraction of nilradical is an intersection of all prime ideals in A containing ker(f).
By i), this is the same as an intersection of all maximal ideals containing ker(f). (One direction is
trivial. For other direction, let « be an element of intersection of all maximal ideals. If z € ker(f),
done. Otherwise, z is in every maximal ideal containing ker(f). Thus for any prime ideal containing
ker(f), it is intersection of some maximal ideals containing ker(f), hence x is in the prime ideal. Done.
) Since an intersection of all maximal ideals containing ker(f) is contraction of Jacobson radical of B,
this implies that Jacobson radical is equal to nilradical, by 1-1 correspondence.

i1) = 4ii): If p is a prime not maximal ideal, then (0) is not a maximal ideal in A/p by 1-1
correspondence. However, since A/p is integral domain, (0) is nilradical. By ii), (0) is the Jacobson
radical. Hence, by 1-1 correspondence, p, which i s the contraction of (0), is equal to an intersection,
say [ m, of all maximal ideals in A containing p. Thus for any q a prime ideal strictly containing p,
intersect q with the (\m is just p. Hence, we can rewrite it as intersection of all prime ideals which
contain p strictly.

#91) = 1): Notes that hints actually denote this way. Suppose ) is false. Then, there is a prime
ideal which is not an intersection of maximal ideals, say p. Thus, zero ideal in A/p is not Jachoson
radical. (If it was, then by 1-1 correspondence p is an intersection of maximal ideals.) Thus, the
Jacobson radical R in A/p is a nonzero ideal. Let f € 9 such that f # 0. Then, By # 0, since f is
not a nilpotent. Thus, B has a maximal ideal, whose contraction is a prime ideal q in A/p such that
f € q. Also notes that any prime ideal containing q strictly contains f, since otherwise that prime
ideal should be a proper ideal in By by Proposition 3.14’s 1-1 correspondence of prime ideal. Hence,
by iii) (which is applicable for its homomorphic image by Proposition 1.1), § is an intersection of prime
ideals strictly containing q, and since every strictly greater prime ideals contains f, this implies f € q,
contradicting the fact that f € 1.

Notes that

Claim XL. Ewvery homomorphic image of Jacobson ring is Jacobson ring.

Proof. Let B be a homomorphic image of A. By Exercise 1.21 iv), for any prime ideal p of B,
Spec(B/p) = V(ker(f)) where f : A - B — B, be a surjective ring homomorphism making B, be
an A-algebra. Then, by ii), (0) is both nilradical and Jacobson radical. Hence, p is intersection of all

maximal ideals containing p in B. Since p chosen arbitarily, B satisfies condition 1i). O

Also, there is another equivalent definition from EGA, according to [6].
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Claim XLI. For a ring A, the followings are equivalent.

(a) For any radical ideal a, we have [\memax(4) M = d.
m2a
(b) For all prime ideal p, we have [memax(4) M = P.
m2p

(¢) For every integral domain A" which is homomorphic image of A, ﬂmEmaX(A,) m=0.

Proof. 1) implies ii) is obvious since any prime is radical. Also, since any radical ideal is intersection
of prime ideals containing it, so ii) implies i). For iii), A’ = A/p for some prime ideal p, thus by
Proposition 1.1, order preserving 1-1 correspondence, ii) implies iii). Also, if iii) holds, then for any
p prime ideal of A, it can be rewritten as intersection of maximal ideals in A containing p, thus iii)
implies ii). O

Since condition ii) is just the same as condition of Jacobson ring, these are another definitions.

(ii): Let g be a prime ideal in B. Then, B/q is an integral domain and finitely generated as A/q°-
algebra. Since A is Jacobson ring, by Exercise 5.23 ii), (0) is both nilradical and Jacobson radical.
Thus by Exercise 5.22, B/q has zero Jacobson radical. Hence, q, which is contraction of (0) is the
intersection of all maximal ideals containing .

(i): This proof came from [6]. Let f: A — B be a ring integral homomorphism. Let B’ be an integral
domain which is homomorphic image of B, and let A’ be the image of A in B’. Then, A’ — B’ is
integral injective homomorphism between two integral domain. Let a = ﬂm/emax( B) m’ where max(B’)
is a set of all maximal ideals of B’. Then,

anAd'=( () w)nd= [) mn4)

m’Emax(B’) m’Emax(B’)

By Corollary 5.8, (" emax(p (M NA") = ym. To see this, we claim that

méeEmax (A’

Claim XLII. If A C B is integral domain and B is integral over A, then there exists 1-1 correspon-
dence between max(B) and max(A).

Proof. Tt is clear that for any m € max(B), m® = m N A is maximal by Corollary 5.8. Conversely,
suppose that m € max(A). Then, by Theorem 5.10, there exists a prime q € Spec(B) such that
gN A =m. Thus, it suffices to show that q is maximal. Suppose it is not maximal; then there exists
a maximal ideal ¢’ strictly containing q. Hence, ¢’ N A = (q)¢ is not only prime but maximal by 1-1
correspondence, and since q' contains ¢, ¢’ N A contains m. Since m is maximal, thus ¢/ N A = qN A.
By Corollary 5.9, ' = q. Thus, ¢ is maximal. O

Hence, by condition ii) of Jacobson ring, a N A’ = 0. This implies a = 0 by the below claim. Since B’
was arbitrarily chosen, B is also Jacobson ring by iii) condition of the above claim.

Claim XLIII. Let A C B be an integral domains, B is integral over A. Then for any nonzero ideal
b of B, b = ANb is nonzero.

Proof. Suppose that A C B. Since b is nonzero, there exists b € B\ A. Since b is integral over A,
b + ap1b" -+ arb+ag = 0.
for some a; € A. Since b" 4+ a,_1b" " 4+ ---+a;b € b, ag € b, hence bN A # (. O

A ring is finitely generated if it is finitely generated as Z-algebra. Thus, it suffices to show that Z and
all fields are Jacobson ring. In case of field, it is trivial since all prime ideal is 0 and maximal. Also, Z
has prime ideals either maximal or (0), which is intersection of all prime ideal which is nonzero. Hence,
Z satisfies condition iii) of Jacobson radical.
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i) = ii): Let A’ be a image of A in B. Then, A’ is Jacobson ring by claim and A’ is integral
domain as a subring of a field B. Hence, nilradical is equal to 0 and which is equal to Jacobson radical
by second condition of Jacobson ring. Now by apply Exercise 5.21 we can find s # 0 € A’ satisfying
conditions in Exercise 5.21. Now, since the Jacobson radical is zero, we can find a maximal ideal
m of A’ not containing s. Then, A’/m is a field, so take 2 be a algebraic closure of A/m. Then,
f: A= A'/m — Q is a homomorphism where f(s) # 0, thus by Exercise 5.21, f can be extended to
g: B — Q. Since B is a field, g is injective, thus, g(B) = B. Since B is finitely generated over A,
there exists x1,--- ,x, € B such that every elements in B can be written as a polynomial of x;s with
coefficients from A’. Now, g(B) is generated by g(x;) for i = 1,--- ,n. Now, since g(B) C Q, g(x;) is
algebraic over A/m, thus g(B) is finite extension of A’/m. Thus, it is a finite dimensional A’/m-vector
space, therefore it has a basis. This implies that it is finitely generated A’/m-module, and using the
surjective homomorphism A — A" — A’/m it is a finitely generated A-module. Hence B = ¢(B) is a
finite A-algebra.

i) = ). Let p be a prime ideal of A which is not maximal, and let B = A/p. Let f be a nonzero
element of B. Then, By is finitely generated B-algebra since every elements in By is polynomial of
1/f with coefficients from B. Thus, using a surjective homomorphism A — B = A/p, By is also a
finitely generated A-algebra. If By is a field, then it is finite over A by assumption ii), i.e., By is finite
A-algebra. Since A acts on By through A — A/p = B, By is also a finite B-algebra. Thus, By is
integral over B by [3][p.60], thus B is a field by Proposition 5.7, which is not true since p is not a
maximal ideal. Thus By is not a field, therefore has a nonzero prime ideal, and whose contraction in B
is a nonzero ideal p’ such that f ¢ p’. Thus, intersection of all nonzero prime ideals in B is zero, thus
intersection of the contraction of those prime ideals, i.e., intersection of all prime ideals containing p
strictly is p. Hence, A satisfies condition iii), thus it is Jacobson radical.

Notes that every closed set and open set is locally closed by intersecting itself with X, which is open.

Also, locally closed is well-defined; if A is open in its closure A, then by definition 3U an open set in
X such that A = U N A. Conversely, if U is open and C is closed, then notes that UNC = U N C.
(To see this, notes that if K is closed set containing U N C, then K N (U N C) is closed set contained
in K but containing U N C. Since K N (U N C) is of form C' N C where C’ is a closed set containing
U. Thus,

CnU = N K = N C’'nC=Cn N C'=CnU.
K closed, containing CNU C" closed, containing U C" closed, containing U
Hence, CNU =CNUNU =CNUNU, which implies that C' N U is open in its closure.

(1) = (2): For any closed set £ in X, take x € E, and take N be a open neighborhood of . Then,
since N is locally closed, thus N N Xy # 0. Since N was arbitrarily chosen, € Xo. This implies
x € ENXy. Thus, E C EN Xy. Conversely, EN Xy C E, hence EN Xy C E = E, done.

(2) = (3): This map is just map from topology of X to the topology of Xy as a subtopology of X.
Hence, it is surjective by definition. To see that it is injective, notes that U N Xg = V N X for some
two open sets in X. Then, U°NXy = VN Xy, thus UcN Xy =VeNn Xy. Byii), U =Ve thusU = V.

(3) = (1): Since the map is bijective, preimage of N Xy = @} is just @ in X. Hence, for any nonzero
open set U, U N Xy is nonzero.

Now we will show equivalence of i), ii) and iii). Define Xy = {m € Spec(4) : m is maximal.}

i) = it): Notes that arbitrary closed set in Spec(A) is V(a) and arbitrary open set is X ;. Thus, let
Y = V(a) N Xy, ie., a prime ideal containing an ideal a but not containing an element f € A. (We
can assume that f ¢ a, otherwise, Y = ().) Now using the homeomorphism ¢* : Spec(A/a) — V(a) C
Spec(A), think about (¢*)~!(Y). It is a set of all prime ideals do not containing f # 0. Since A is
Jacobson, so is A/a, thus 3m € Spec(A/a) such that m is a maximal ideal of Spec(A/a) not containing
f. Hence, its pullback ¢*(m) = m. is also a maximal ideal contained in V(a) but not containing f.
Hence, Y N X # ). Since Y was arbitrary locally closed subset of Spec(A), done.

i) = iii): Let Y = V(a) N X;. If Y is singleton, then there is only one prime ideal p containing a
but not containing f. Since Xy is dense by ii), Y N Xy =Y, thus p is maximal. Hence Y is closed.
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i) = 14): Suppose A is not a Jacobson ring. Then, Jp which is not a maximal ideal such that

d = (\g'espec(a) 4’ is bigger than p. Let f € q\p. Then, V(p)NX; = {p}. Thus there is a locally closed
a'2p

singleton which is not closed. Hence iii) fails. So we just showed i) implies iii). Its contrapositive is

what we desired to have. .

Notes that K € X, thus ¥ is nonempty. Also, if C is a chain in X, then let C’ be a direct limit of
rings in C'. Since given map is inclusion and dominate relation also holds by composition of inclusion,
and since C’ is totally ordered thus it is directed set, we can define C’ well as a directed limit using
Exercise 2.21. Also, by Exercise 2.22, C' is an integral domain. And, by construction, C' = Jzce B
by Exercise 2.17.

Now think about a maximal ideal of C’. Since each ring B in C' is local ring, it has the maximal ideal
mp, thus we have an exact sequence

0—>mp—B— B/mg—0
for any B € C. Thus, by Exercise 2.18 and 2.19, we can conclude that

0= Jmp—=C' =0/ | mp—0
BeC BeC

is exact. (Notes that direct limit of maximal ideal comes from Exercise 2.17, and C"/Ugcemp =
ligB/mB. ) Notes that ligB/mB is a field, since it is Jgc B/mp by Exercise 2.17 (by identifying
each ring as a subring of the bigger one) and union of fields in a totally ordered by inclusion is also a
field (just easily check all axioms of fields using standard way). Thus, | Jz.- mp is a maximal ideal of
C'.

Now we claim that C’ is local ring.

Claim XLIV. A direct limit of local ring is local.

Proof. Use notation in the problem. Let (C')* be set of units in C. We will show that (C')* =
C'"\ Ugecmp. Pick any unit 2. Then, there is a ring B € C such that z, 2”1 € B. Hence,
z,27' ¢ mp, thus © € C" \ g mp. Conversely, pick © € (Jgeomp. Then, z € mp in any subring
B € C containing . This implies that z is unit in any subring B € C containing x. Hence, =% € B
for such B, thus z is unit in C". Hence, C' \ Jgcomp = (C')*. Now Proposition 1.6 assures that C’
is local ring. O

Since dominate relation is clear from the construction of maximal ideal of C”, (C', [ g mp) is maximal
element of C'. Thus by Zorn’s lemma, ¥ has a maximal element.

Now pick A be be such maximal element, and m is the maximal ideal. Now let (2 be the algebraic
closure of A/m. Then, (A, f: A — A/m — ) is inside of ¥ in [3][p.65]. If we have (A, f') € ¥ of
page 65, then A C A’ f'|4 = f, thus ker(f') N A = ker(f), which is maximal ideal in A (since f maps
into a field) thus ker(f’) N A = m. Since A’ is also a local ring, this implies that (A", m’) > (4, m) in
Y of this Exercise. (Notesthatker(f’) = m’ since f’ maps into a field, and A’ is local ring.) Thus,
by maximality of (A, m) in the X of this Exercise, A = A", m = m’. Hence, f’ = f, this implies that
(A, f) = (A, f"), therefore (A, f) is maximal element in ¥ of page 65, thus by Theorem 5.21, A is a
valuation ring of the field K.

Conversely, let (A, m) is a valuation ring of K. If it is dominated by other sub local ring of K, say
(A’,m’), then by Proposition 5.18, (A’,m’) is a valuation ring of K. Now notes that any element € m
has inverse 7! in K \ A. Conversely, if z € K \ A, then by the definition of valuation ring, 2= € m
since 27! is not a unit in A. Thus, K\ A= {z7!: 2z € m\ {0}}. Hence,

ANACK\A={z7izem\{0}} C{z 7 iz em\{0}} =K\ A4,
where {71 : 2 € m\ {0}} C {z7!:2 €m’\ {0}} comse from the fact that m’ O m. This implies that
ANA=A'\NA)N(K\A)=0. Hence A = A’, thus (A, m) is maximal.
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(1) = (2): Suppose a and b are nonzero ideal. (If one of them is zero, then it is trivial.) If A is a
valuation ring, but a Z b, then Ja # 0 € a\ b. Now for any b # 0 € b, either a/b € A or b/a € A. In
case of a/b € A, then b-a/b=a € an b, contradiction. In case of b/a € A, then a-b/a =b € anb.
Since b was arbitrarily chosen, b C a.

(2) = (1): For any a,b € A, (a) C (b) or (b) C (a). In case of (a) C (b), a = xb for some x € A,
thus z = a/b. In case of (b) C (a), b = ay for some y € A, thus y = b/a = x~!. Hence, for x, which
is an element of field of fraction of A, i.e., K, either x € A or = € A. Hence, by definition, A is a
valuation ring.

Both A, and A/p are still integral domain. Also, in case of A/p, Proposition 1.1 assures the containment
relationship of any two ideals. In case of A,, if there is two ideals a® and b® in A,, (we can assume
that they are extended from ideal of A by Proposition 3.11), then containment relation also gives
containment relation between a® and b® (since generators of an ideal are contained in those of another
one.) Thus, both are a valuation ring.

A ring B is “local ring of A” means that B = A, for some prime ideal p. I refer [7]. Let B be a ring
containing A and be contained in K. Then by Proposition 5.18 ii), B is a valuation ring of K, and by
Proposition 5.18 i), B is a local ring. To see it is a localization of A by some prime ideal p, let mp be
a maximal ideal of B. By the inclusion map, contraction of mg in A, which is p := mp N A is prime
ideal since contraction of prime ideal is prime ideal. Since A is local ring, p C m4. Now we claim that
A, =B.

If f e A\p, then f & mp, thus f is invertible in B, hence for any a € A, a/f € B. Thus, we
have an inclusion map A, — B. To see other direction, we claim that B dominates A, as a subring.
From construction, mp 2 pA,. By Exercise 5.28 with the fact that A is a valuation ring, A, is also a
valuation ring. Also notes that field of fraction of A, is also K, by the universal property of localization.
(Apply Corollary 3.2 iii) on the map A — K). Hence, we can regard (A, pAy) be an element of ¥ in
Exercise 5.27 such that (A4,,pA,) < (B,mp). However, Exercise 5.27 says that a set of all valuation
rings in X is the set of all maximal elements in A. Thus, A, = B, done.

Let ¢ = 2+ Un =y+U €. First of all, we need to show that this order is well-defined. If
E=a+U =2 +Uandn = y+U = ¢y + U, then by equality, y(v/)~! and y'y~! € A, and
z(z')71 2’2~ € A. Thus,

zy e A = (e Ny (y) ) =2'(y) " € A

Hence, the order is independent of choosing representative.

Now, to see this order is defined on any two elements, let ¢ = x + U,n =y + U € I'. Then, since A is

valuation ring, either z € A or x=! € A (or both). If z,27! € A, then z € U, thus ¢ = 0 € T, which

implies > 0 since Oy~! = 0 € A. So assume that only one of both holds. (Similarly, one of y € A or
y~! € A holds.) Then,

‘ reA ‘ zleA

yed | (1) (2)

yted| (3) (4)

four cases occur. In case of (2) or (3), definitely yz=! € A or xzy~! € A, thus order is determined. In

case of (1) or (4), since the inverse of yz =1 is xy~!, thus at least one of them should lie in A. Hence,
order is still determined. (If both of them lies, then, £ = 7. )

Now to see that it is well-defined ordering we need to show it is reflexive, antisymmetry and transitive.
For reflexivity, definitely 1 = xz~! € A, thus & > ¢ for any ¢ € I'. For antisymmetry, if £ > 7 and
&€ <, then zy~',yx~! € A. This shows that zy~ ', yz~! € U. Thus,

n=y+U=yry ' +U=2+U=¢
For transitivity, if £ > n > w for each representative x,y, z respectively, then, zy~',yz~! € A, thus

xy lyz~t = xz71 € A, thus £ > w. Hence it is well-defined ordering.
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32.

Lastly, for the compatibility, if ¢ > 7, then zy~! € A, thus for some w = 2+U, &w = 22+U, nw = yz+U,
thus, zz(yz)~! = 2y~ € A, which implies {w > nw.
Lastly, let v : K* — I'. Suppose v(x) > v(y). Then, (z+y)y ! = 2y~ 1 + 1 € A since v(z) > v(y)

implies zy~! € A. Hence, v(z + y) > v(y) = min(v(z),v(y)). By the similar argument on the case of
v(z) < v(y), we can conclude that

v(z +y) = min(v(z), v(y)).

I refer |4]. To define a ring well, we need a 0, which is compatible with v. Thus, let I' = I'U {co} which
is a monoid such that Va € T, a4+ oo = oo with order co > a. Then,

v(0) =v(0-z) = v(0) + v(z) = 00+ v(z) = 0.

and
v(z) = v(0 4+ x) = min(oco, v(z)) = v(z).

Let A = {z € K* : v(z) > 0}. First of all, we claim A is a subring of K. From v(1) = 0, (since
v is a monoid homomorphism) 1 € A. And, co > 0 implies 0 € A. Now, —1 € A since 0 = v(1) =
v(—1)4wv(—1) implies 2v(—1) = 0. If v(—1) > 0 or < 0, then 2v(—1) > 0 or < 0, thus false. This implies
v(—1) = 0. Thus, if x € K*, then v(—z) = v(—1- ) = v(—-1) + v(z) = 0+ v(z) = v(z). This implies
that if z € A, then —x € A. Also, for any z,y € A, v(z —y) = min(v(z), v(—y)) = min(v(z), v(y)) > 0.
This implies A is closed under subtraction. Also, v(zy) = v(z) + v(y) > 0, thus A is closed under
multiplication. This implies that A is a subring of K.

Moreover, A is a valuation ring since for any x € K*, 0 = v(1) = v(x)+v(z~!) implies v(z~1) = —v ().
Hence if v(x) = 0, then 2,271 € A. If v(z) # 0, then either z or =1 must be in A.

To see that valuation ring induces valuation, let A be a valuation ring of K. Then define v : K* —
I' = K*/A* as the canonical map. By Exercise 5.30, we can show that I' is the value group of A, thus
v is valuation. Now let A’ = {x € K* : v(z) > 0} U {0}. Then, v(z) >0=v(1)iffz-(1)"'=2€ A
by construction in Exercise 5.30. Hence, A’ = A.

Conversely, for given v, we have ker(v). Thus, v(K*) & K*/ker(v). Since v(z) = 0 iff v(z=1) = 0,
thus ker(v) = A*, a set of all units in A. Hence, v(K*) = K*/A*. Let w : K* — K*/A* be a valuation

constructed by Exercise 5.30. Then by above argument, w(z) > 0 iff x € A, hence, v(z) and w(z) has
the same sign, i.e., v(z) > 0 iff w(z) > 0. Also,

v(z) <u(y) = 0=v(l) =v(@)+v(@™) < v@)to™) =v(ya™!) = ya7' € A{0} = w(@) < w(y).

Hence, w is order preserving valuation. Moreover, we have an isomorphism by sending w(z) to v(z).
To see it is isomorphism, notes that it sends 0,1 to 0, 1, and it is bijective in a clear manner. Also, it is
additively homomorphic, since w(z) + w(y) = w(zy) — v(zy) = v(z) + v(y) which is sum of image of
w(z) and w(y). Hence, it is bijective homomorphism thus isomorphism. Thus, v and w are essentially
equivalent.

Since value group is defined as surjective image of K*, so we can assume that I' is image of K* under
a valuation map v.

Notes that v(A — p) is a monoid; to see this, 1 € A —p, thus 0 € v(A —p). And if x,y € A —p,
then zy € A — p since p is prime, thus v(z) + v(y) = v(zy) € v(A —p). Thus, v(A — p) is closed
under addition. Now let A = —v(A —p) Uwv(A —p). It suffices to show that A is isolated subgroup.
Notes that any elements has inverse by construction. Thus, let v(z),v(y) € A. If both are positive or
negative, then since —v(A — p) and v(A — p) are closed under addition, so their sum is in A. Now if
v(z) € v(A—p),v(y) € —v(A—p), then v(y) = —v(y’) for some y' € A—p. Hence, y € K* is inverse of
¥’ in the field of fraction K. Now, v(z)+v(y) = v(zy). If v(zy) > 0, then zy € A, hence z/y’ € A. This
implies = x/y’ - y/. This implies z/y’ € A —p. Thus, zy € A —p, hence v(z) + v(y) € A. Otherwise,
if v(zy) < 0, then 2y € A, thus z/y’ & A. Hence y'/x € A, thus, y//x -z =3/ implies y/'/z € A —p,
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since both z,y’ are not in p. Therefore, y'/z = 1/xy € A — p. This implies (vy)~! € A — p, hence
v(zy) = —v(1/xy) € A. Thus, in any case, A is closed under addition.

Thus A is a subgroup. Now we need to show that A is isolated. Let z € A —p, and y € A such
that v(x) > v(y) > 0. Then, v(zy~!) = v(z) — v(y) > 0. This implies 2y~ € A. If y=! € A, then
y is unit, thus y € A — p, done. Otherwise, x is nonunit. (If x is unit, then y~ € A, contradiction.)
Also, xy~! € A — p, otherwise zy~! -y = x € p, contradiction. Hence, v(zy~!) € A. This implies
v(z) —v(y) € A. Thus, —v(y) € A since A is a subgroup containing v(z) and —v(z). Thus, v(y) € A
since A is closed under inversion. This shows A is isolated.

Now define a map A sending prime ideal p to its corresponding isolated subgroup A(p). If A(p) = A(q),
then its subset whose sign is positive is also the same; this implies v(A — p) = v(A — q). Thus,
Vz € A—p,Jy € A— qsuch that v(z) = v(y). Then, 0 = v(x) — v(y) = v(zy~!) implies xy~1 € A* by
construction, thus = xy~! -y € A — q since unit is contained in A\ q and from prime property of q.
Thus, A—p C A—q. By the same argument in the other direction we can conclude that A—p = A —q,
Thus, p = q. Hence, this mapping A(—) is injective.

To show that the mapping is bijective if we regard it as a map from Spec(A) to a set of all isolated
subgroups of I', we need to show that it is surjective map. Let A be an isolated subgroup of I'. Then,
let p = A\ v !(A). If we show that p is prime ideal, then v(A —p) = v(A N v~ L(A)) is just a
subset of A containing all nonnegative elements, thus A is the smallest subgroup containing it, hence
A(p) = A, done. To see p is prime ideal, let € p. Then, —x € p since v(—z) = v(x). Also, if
x,y € p then v(z + y) = min(v(z),v(y)) > v(z) € A for any v(z) € A since v(x),v(y) ¢ A and
isolated property of A. Thus, x +y € p. Thus p is additive subgroup. Now, for any x € p and y € A,
v(zy) = v(z) + v(y) > v(x) > v(z) € A for any v(z) € A, thus zy € p. Hence p is an ideal. Now, if
x,y € p, then z,y € ANv=L(A), thus v(xy) = v(x) +v(y) € A, which implies zy ¢ p. Thus p is prime
ideal.

Now to figure out what are the value groups of the valuation ring A/p, A,, we need to define the
value group. Let v : A/p — T by sending @ to v(a) if @ # 0, otherwise p = 0 — v(0) for any
p € p. To see it is well-defined, notes that if @ = b, then b — a = p for some p € p, then v(a) =
v(b — p) > min(v(b),v(—p)) = min(v(b),v(0)) = v(b) since v(0) = oo by construction above. By the
same argument, we get v(b) > v(a), thus v(a) = v(b). Now let K’ be a field of fraction of A/p. Then,
extend v’ such that sending @/b to v(a) — v(b). Then, still two properties of valuation map holds. (For

multiplication,
v(a/b-¢/d) = v(ac) — v(bd) = v(a) + v(c) — v(b) — v(d) = v(a/b) + v(c/d)
and for addition,
v(a/b+ c/d) = v((ad + be) /bd) = v(ad + be) — v(b) — v(d) > min(v(ad), v(be)) — v(b) — v(d).

If v(ad) is minimum, then the righthandside is v(a) — v(b) = v(a/b), otherwise it is v(c/d), thus it is
equal to min(v(a/b),v(c/d)). Hence v is a valuation of K’ by Exercise 5.31. Let v(K’) = A, which
is a subgroup of I'. Then, construct valuation ring using Exercise 5.31., say B. By construction,
BnNA/p={a€ B:v(a)>0}. Now we want to show that B = A/p.

Let o € B such that v(a) > 0. Then, v(a) = v(a/b) = v(@) — v(b) = v(a) — v(b) > 0 for some @,b € A
with nonzero nonunit b. This implies that ab™* € A . If ab™' € p, then a = ab™' - b € p, hence
a = 0. Otherwise, ab=* € A — p implies a = ab~'b € A — p by prime property of p. Hence we have
a,bab=t € A —p. Thus, v(ab=1) = v(@/b). Now notes that in K’, ab~! = @/b, since it has the same
inverse b/a, i.e.,

ab-1-b/a=ua/a=1.
Thus, o € A/p. Thus, B = A/p. Hence, v(K') is the value group of A/p.

Now we claim that v((K’)*) = A(p). First of all, v(A/p \ {0}) € A(p)™ a subset of A(p) having all
nonnegative elements, by construction of extension. And for any nonnegative element in A(p) comes
from some z € A — p, then T # 0 in A/p implies that v(Z) is the element. Hence, v(A/p) 2 A(p)™T,
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This shows that v(A/p \ {0}) = A(p)T. Slnce A(p) is the smallest subgroup containing A(p)™,
v((K")*) D A(p). Conversely, any elements in v((K’)*) is of form v(a) —v(b) € A(p), v((K')*) C A(p).

Also, in case of Ay, its field of fraction is the same as that of A. Hence, we can use the original valuation
v on this case. Now, Proposition 5.18 says that A is local. Thus, m contains p and U = A — m, i.e.,
set of all units in A, by Proposition 1.6. And notes that I' = K*/U by Exercise 5.30 and 5.31. Now
notes that unit of A, is V := {a/b € A, : a,b € A —p}. Hence, V is a subgroup of K*. Thus, by
Exercise 5.30, the value group of A, is K*/V. Now notes that V' C U and both U,V are subgroup of
K*. Thus, by the third isomorphism theorem,

K*/V2(K*/U)/(V/U) =T /v(V)

since v is a canonical homomorphism K* — K*/U.
First of all, we claim that v(V) = v(A4, \ {0}). To see this, notes that if a/b € A, with a € p, then

v(a/b) = v(a) — v(b)

Now we claim that v(V) = A(p). To see this, let a/b € V. Then, a,b € A —p. Thus v(a/b) =
v(a) — v(b) € A(p) by construction of A(p). Conversely, by construction, any element in A(p) is of
a form v(a) or —v(a) for some a € A —p. Since a/1,1/a € V v(V) contains v(a) and —v(a), which
implies v(V') 2 A(p). Thus, the value group of A, is isomorphic to I'/v(V) =T'/A(p).

To see A is an integral domain, notes that using the order of I', we can give a degree on A. Then, let
¢ = der gTg, P = der byxy for some ay, b, € k all but finitely many zeros. Now suppose that z,,,
Ty, is the lowest nonzero term in ¢ and ¢ respectively. Then, ¢ has a lowest nonzero degree term
Tg,+g,, SINCE ag,, by are nonzero, thus their product is nonzero since k is an integral domain. Hence,
¢y is nonzero.

Actually, this is just proof of the claim that

Claim XLV. A group ring over integral domain is integral domain.

Now let u = A\jzq, + -+ + Apx,, is any non-zero element of A, where \; # 0 for all ¢, and a; < -- - ay,.
Define vg(u) = a;. Then, for any u = A\ zq, +- -+ ApZq, , v = Nj@p, +- -+ N xp, with by < -+ < by,
uv has the lowest term a1b124, 14,, thus vo(uv) = a3 +by = vo(u) +ve(v). Also, vo(u+v) > min(ay, by)
where strict inequality occur when a; = by and Ay = —\]. Hence vy : A — {0} — T satisfies conditions
of Exercise 5.31.

Let K be the field of fraction of A. We need to show that vy uniquely extended to a valuation v of K,
and that the value group of v is T.

First of all, if v is an extension of vy, then from axiom 1, 0 = v(1) = v(u/u) = v(u)+v(1/u). Thus, any
extension v of vy has a value v(1/u) = —v(u). Thus, any extension v should have v(u/u’) = v(u)—v(u'),
thus letting v(a/b) := vg(a) — vo(b) is the unique extension if it is well-defined. And definitely, it is
well-defined; if a/b = ¢/d ,then ad = be, thus vo(a) + vo(d) = vo(b) + vo(c) = wo(a) — vo(b) =
vo(c) — vo(d) = wv(a/b) =wv(c/d). So it is well-defined extension.

To see that v is also a valuation, let a/b,c/d € K*. Then, v(a/b- ¢/d) = vo(ac) — vo(bd) = vo(a) —
vo(b) +vo(c) — vo(d) = v(a/b) + v(e/d). Also, v(a/b+ c¢/d) = v((ad + be)/bd) = vo(ad + be) — vo(bd) >
min(vg(ad), vo(be)) — vo(bd), and if vg(ad) is minimum, then min(vg(ad),vo(be)) — vo(bd) = vo(a) —
vo(b) = v(a/b), otherwise v(c/d). Thus, v(a/b+ ¢/d) > min(v(a/b),v(c/d)). Thus v is a valuation.
Now v(K™*) is the value group of v by Exercise 5.30. We claim that v(K*) = I". Notes that v(A—{0}) =
I since A contains z, for any g € I'. Thus, v(K*) = T since K* contains A — {0}. Hence, the value
group of v is T'.

By Exercise 5.31, B := {u/u’ € K* : v(u/u') > 0} is the valuation ring of v. We claim that B # A in
general. Notes that x, - ©_, = ©q—q = z¢. This implies that v(z,) = —v(x_4). Thus, if a is nonzero
elements in T', then either v(z,) > 0,v(x_,) < 0 or v(z,) < 0,v(z_4) > 0. In any case, if T' has an
element at least 3, i.e., an element whose order is not 2, then either x_, ¢ B or 2, € B. Thus, B # A.
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Let C = g(B) C K. Then, C' D A since g(f(A)) = Ain K. Also ,wecanlet h: A— Cby h=go fis
just canonical injection. By Proposition 5.18 i) and ii), C' and A are local rings. Let n be the maximal
ideal of C. Notes that f is closed mapping, and g is homeomorphism onto V' (ker(g)), thus, g*(n) is
also maximal ideal, therefore

Flm) = (9ol m=h(w

Exercise 1.21 vi)

is maximal ideal since f preserves closed singleton to close singleton. Now, notes that h*(n) = h=!(n) =
nN A since h is an injection. Thus, C' dominates A in the sense of Exercise 5.27, since n is the unique
maximal ideal of C. However, since (C,n) € ¥ such that (A,m) < (C,n) but A is a valuation ring,
C = A, by Exercise 5.27.

By exercise 3, f : A — B is integral implies f ® 1 : AQ C — BQ C is integral, thus by Exercise 1,
A A
(f ®1)* Spec(B @ C') — Spec(C) is closed map.
A

Conversely, suppose that f : A — B is a ring homomorphism such that for any A-algebra C, (f®1)* :
Spec(BQ C) — Spec(C) is integral. Our goal is to prove that when B is integral domain, then f is

A
integral. To follow the hints, let A’ = f(A). Then f: A’ — B is just a canonical injection. Let K
be the field of fractions of B. To use Corollary 5.22, it suffices to show that for any valuation ring

A" of K containing A contains B also. Since A” is also an A-algebra by canonical map A — K,
we know Spec(A” Q) B) — Spec(A” Q) A) = Spec(A”) is closed map. Now let g : A" Q@ B — K by
A A A

a”’ @b a”’b. Tt is well-defined A-algebra homomorphism, since it is induced by the universal property

of tensor product applying on the bilinear map A” x B — K by (a”,b) — a”b. Then, by Exercise 5.34,

g(A” @ B) = A”. Then, ba” € A” for all b € B and all «” € A”. Thus, by taking ¢’ =1, B C A”.
A

Since A” was arbitrarily chosen valuation ring containing A, Corollary 5.22 shows that B is in the
integral closure of A’. Thus, B is integral over A’. It is definition of the integral ring homomorphism.

Now we change the condition, from B is integral domain to B is a ring with only finitely many minimal

prime ideals. To see this, let py,- - ,p, be all minimal prime ideals of B. Then, notes that B — B/p;

is surjective, which implies BQ C — B/p; Q C is surjective for any A-algebra C, by Proposition
A A

2.18 applying on the exact sequence ker(B — B/p;) - B — B/p; — 0. Thus, Spec(B/p Q@ C) —
Spec(BQ C) is closed map since Spec(B/p; Q C) = V(p;) C Spec(BQ C), and any close?i set of
Vips) isAintersection of V(p;) with some closéd set of Spec(B Q) C), tﬁus closed in Spec(B @ C).
Hence, A — B — B/p; induces closed map Spec(B/p; @ C) — Sfi)ec(C) for any A-algebra C. %hus,

by apply the above results, we get A — B — B/p; is integral. Thus, A — B — [[;_,(B/p;) is integral
by Exercise 5.6. Then kernel of B — [[!_,(B/p;) is nilradical R of B since intersection of minimal
prime ideal is just intersection of all prime ideal. Thus, by the first isomorphism, []\, (B/p;) = B/R
is integral. Now let y € B. Then, there exists a monic polynomial p(z) € B/R[z] such that p(g) = 0.
Then, by picking any representatives of each coefficients of p(z), we can regard p(z) is in f(A)[z] such
that p(y) € M. Then Im € N such that p(y)” = 0. Since p(z) is monic, so is p(x)!, and p(y)! = 0
implies y is integral over f(A). Thus, f: A — B is integral.

Chain Conditions

In the example in [3][p.75], to see that any subgroup of G are the G,,, notes that G,, is cyclic group generated
by 1/p™. Now we use induction. Let H be a subgroup of G generated by one element, then done. If it is
generated by n elements, then it has at least two generator a/p™ and b/p™ with irreducible fraction form, thus

if we assume n < m wlog, then by Bezout’s identity, there is ¢, d such that cap™ ™"+ db = 1 since ap

m—n

and

b still are relatively prime. Thus, d(b/p™)+c(ap™ ™ /p™) = 1/p™, and definitely (a/p™,b/p™) 2 (1/p™) and
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vice versa. Thus, we can reduce its generators. Thus, H is cyclic, done. If H has no finite set of generators,
i.e., H is generated by infinitely many generators, then for any m € N, there exists n > m such that a/p" is
in the generator of H, i.e., ged(a,p™) = 1. Since each a/p™ generates G,,, H contains G itself.

Claim XLVI. Quotient of finitely generated module is finitely generated. Also, submoudles of quotient
module bijectively correspond to submodules of original module containing the denominator.

Proof. For any m = 2?21 a;g; where {g;} is a set of generators of a finitely generated module M, ¢(m) =
2?21 a;m(g;)-

For M and M/N, every submodule of M containing N can be quotiented by N Conversely, for given
submodule @ of M/N, ker(M — M/N — (M/N)/Q) is a module corresponding to Q. O

Also, in a Proposition 6.9, additive is in a sense in the Category of A-module, i.e., M = M’ & M”,
which gives a short exact sequence. And in Corollary 6.11, my ---m;_1/my ---m; is A/m; module by usual
product; notes that if T € my---m;_1/my---m; and @ = be A/m, then a = b — m for some m € m;, thus
aZ = a% = bx — mx = bx — T = bx since mx € my ---m;. Thus it is a vector space.

1. (a) Let a,, = ker(u™) for each n € N. Then, a; D ag D --- is a chain of ideals. Since M is Noetherian,
In € N such that a,, = a,41 = ---. Let y € ker(u"™!) = ker(u"*1) N M = ker(u"*1) N Im(u™).
Then, u"(z) = y for some x € M, and u" ! (z) = u(y) = 0 implies z € a,,11 = a,, therefore y = 0.
Hence, ker(u™*1) = 0, which implies that «"*! is injective. Thus, u is injective on Im(u™) = M.

(b) Let a,, = coker(u™) for each n € N. Then, a; C az C --- is a chain of ideals. Since M is Artinian,
Jn € N such that a,, = a,11 = ---. This implies Im(u") = Im(u"*!) = - ... Thus, for any z € M,
Jy € M such that u"(z) = u"*(y), thus u"(z — u(y)) = 0. Since u is injective, so is u", thus
x = u(y). Since x was chosen arbitrary, u is surjective.

2. Suppose M is not Noetherian. By Proposition 6.2, M has a submodule N which is not finitely
generated. Pick z1 € N, then N — Axq # 0, thus pick x5 € N — Azy. Since N # (Axy + Axs), pick
x3 € N—(Ax1+ Azsy), and so on. Then, {Ax1, Az + Ax,, - - } is a countable set which doesn’t contain
a maximal element, contradiction. (Notes that we can construct a maximal one, which is union of all
modules in the set; however, this union itself is not contained in a set, since it is not finitely generated.)
Thus M is Noetherian.

3. Proposition 2.1 ii) implies that (N7 + N2)/Ny = N3 /(N1 N Na). Since (N7 + N2)/Ny is a submodule of
M /Ny, it is Noetherian, thus Ny/(N1 N N3) is Noetherian. Now take an exact sequence

O—)NQ/(Nl ﬂNg)—)M/(NﬂWNg)—)M/Ng%O

Since M /Ny = (M /(N1 N N3))/N2/(N1 N Nz), it is exact. Also, since both Na/(N1 N Na2) and M /N
are Noetherian, so is M/(N; N Na) by Proposition 6.3.

Conversely, suppose M /N1, M /Ny are Artinian. Then by the same argument, just replacing the word
‘Noetherian’ to ‘Artinian’ we get the desired result, i.e., M/(N; N Ng) is Artinian.

4. Since M is Noetherian, it is finitely generated by Proposition 6.2, thus there exists my,--- ,m,, gen-
erators of M. Then, a = (), Ann(m;). Since A/ Ann(m;) = Ax; C M, A/ Ann(m;) is Notherian for
any 7. Thus, A/a is Noetherian when n = 2 by Exercise 6.3. Now suppose it holds for 2,3,--- , k — 1.
Then, A/, Ann(m;) = A/(NEZ) Ann(m;) + Ann(m;)) and A/} Ann(m;,)) is Noetherian by
inductive hypothesis. Thus, by applying Exercise 6.3 again, we get A/ ﬂle Ann(m;) is Noetherian.
Thus by induction, A/a is Noetherian.

However, this doesn’t hold when we replace Noetherian by Artinian. Let G be a group G in Example
3) of |3|[p.75] Then, G is Artinian Z-module, and Annz(G,) := p™ since G,, := (1/p™). However,
a = Ann(G) = (2, Anng(G;) = 0, thus Z/a = Z, but Z is not artinian, since it has infinte length
chain (p) 2 (p?) D ---
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10.

Let Uy C Uy C -+ be a chain of open sets in a subspace Xy. Then, U; = V; N X for some open set
V; for each i, hence it induces a chain of open sets V; C Vo C --- in X, thus it stabilizes, therefore
U1 Q Ug g -- . stabilizes.

To see that X is quasi compact, suppose that {U,}acr be a open cover of X. Pick an open set and
define it as U;y. Define U,, be union of U,,—; and an open set V chosen from {U, },er such that

v { an open set in the cover {U, }oer such that V \U,—1 # 0

() if a set satisfying the above condition doesn’t exist.

Then, U, is still open since it is finite union of open sets, thus U; C Uy C --- is an ascending chain
of open sets in X. Since X is Noetherian, it stabilizes at some n € N. Now suppose X # U,
Then, 3z € X \ U,. Hence, we have an open neighborhood V' € {U,}aer of 2. Thus U,41 2 U,,
contradiction. Hence, U,, = X. Therefore, {U, }ner has finite subcover of X.

i) = 1i1): By Exercise 6.5, every subspace of X is Noetherian, thus quasi-compact.

iti) = 1i): Clear.

i) = 1i): Since X is also an open subspace of X, done. (Or, if we take any ascending chain of open
sets, let U be union of all ideals in a chain. Then, U is open in X since for any « € U, it is contained in an
open set in the chain, thus at least one of its open neighborhood is inside of U. By ii) U is quasi-compact.
Since the given ascending chain is a covering of U, it has finite subcover, such that U;,,--- ,U;,  with
i1 < -+ < iym. Thus, by letting n = ,,, we can see that U,, = U:'L:1 U =U D Upqx 2 U, for any k.
This implies U, 4+ = U, for any k.

Suppose not. Then, there is a Noetherian space X such that X is not a finite union of irreducible closed
subspaces. Thus, ¥ defined in the hint of this Exercise is nonempty. By d.c.c. of Noetherian space and
Proposition 6.1, ¥ has a minimal element, say Xy. Then, Xj is reducible, otherwise it is trivially a
finite union of irreducible close subspace. Thus, by Claim [[I X, = C; U C5 for some proper closed set
of X. However, since X is a minimal closed subspace which is not a finite union of irreducible closed
subspaces, each C; and C5 is a finite union of irreducible closed subspaces, so is Xj, contradiction.
Thus every Noetherian space is a finite union of irreducible closed subspaces.

For the last statement, by Exercise 1.20 iii), there exist a set of all maximal irreducible subspaces, i.e.,
set of all irreducible components of X, # := {Y;};cr of X such that ¢ is closed covering of X and each
Y; is closed. Let X = U?=1 C; for some irreducible closed subspaces of X for some n € N. Let Y; be a
maximal irreducible subspaces containing C;. (Such Y; exists by Exercise 1.20 ii).) Then, X = J;_, ;.
Hence {Y;}!, is a finite subcover of %". Now suppose that n be the minimal number of the cardinality
of finite subcovering of . Thus, for any maximal irreducible subspaces Y; , Y; = |J;_, Y; NY,,, thus
Y; =Y, for some i = 1,--- ,n by maximality. Thus, & is finite.

It suffices to show that a collection of closed sets in Spec(A) satisfy d.c.c. Let V(ay) 2 V(ag) D ---
be a descending chain of closed sets in Spec(A). Then, a; C ay C is a chain of ideals in A. Since A is
Noetherian, it stabilizes at some n € N. Hence, V(a,) = V(ap4x) for any k. Thus d.c.c. holds.

Converse is not true in general. Let A = k[z1,---,]/(2%,23,--+). Then, nilradical of A is (z1, 22, "),
thus A/(z1,x2,---) = k implies Spec(A/R) is a singleton, thus Noetherian. By Exercise 1.21 iv),
Spec(A) = Spec(A/R) is Noetherian. However, A is not Noetherian since (z1) C (z1,22) C -+ is an
infinite chain.

By Exercise 6.8, Spec(A) is Noetherian, thus by Exercise 6.7, Spec(A) is a finitely many irreducible
components. In the proof of Exercise 1.20 iv), we shows that every irreducible closed subset of Spec(A)
is of form V' (p). Thus V(p) is irreducible components if and only if p is minimal prime. Hence, A has
only finitely many minimal prime ideal.

Notes that Supp(M) is a set of prime ideal p such that M, # 0. Let a = Ann(M). Then, by
Exercise 3.19 v), Supp(M) = V(a), thus it is closed. By Exercise 1.21 vi), V(a) = Spec(A/a) as a
homeomorphism. By Exercise 6.4, A/a is Noetherian. Hence, Supp(M) is Noetherian subspace of
Spec(A).
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11. By Exercise 5.10, it suffices to show that going-up property implies closed mapping when Spec(B) is
Noetherian. Suppose f has going up property and Spec(B) is Noetherian. Let V(b) be a closed set
in Spec(B). Then, Exercise 6.5 implies that V(b) is Noetherian. By Exercise 1.21 vi), Spec(B/b)
is homeomorphic to V(b), thus Noetherian. Hence by Exercise 6.7 and Exercise 1.20 iv), B/b has
finitely many minimal primes. Thus its contraction, say ¢i,--- ,q, are minimal elements in V(b),
thus V(b) = U, V(q;). Now let p; = f*(q;). Then, r(b)° = (), p; using Exercise 1.18. Thus any
prime ideal p in V(r(b)¢) contains (_, p;, so Proposition 1.11 ii) says p D p; for some j € [n]. Thus,
V(r(6)) € U;—,(p;)- And the other inclusion is clear since each p; contained in the lefthandside.
Thus, V(r(b)) = U;_,(p:). By Exercise 5.10 i), going up property implies that V(p;) = f*(V(g,)).

Hence, . .
Fve) =r(Uva) = Uw) = Vo)
i=1 i=1
Thus, f* preserves closedness.
12. Let p; C po C --- be an ascending chain or prime ideals in A. This induces a descending chain of

closed sets V(p; D V(p2) 2 - -, thus it stabilizes, which implies the chain or prime ideal stabilizes.

For the counterexample, I just refer [8]. Let A be the counterble direct product of Z/27Z. Then, Spec(A)
is countable disjoint union of X; = Spec(Z/2Z) for any i € N. Notes that the set of prime ideals of A
is {(0) x [[;2,;Z/2Z : j € N} U {0}, thus every elements except 0 is maximal. Hence, every ascending
chain stabilizes. However, Spec(A) has the infinite ascending chain of open sets, by unioning those
disjoint unions. (For example, X1 C X; U X5 C ---.)

7 Noetherian Rings

In proposition 7.8, (i) implies (ii) by Proposition 5.1 and (ii) implies (i) using generators of C as a finitely
generated A-module and showing that its monic polynomial over B induces a finitely many generators of C'
as a B-module.

Claim XLVII. If B is a finitely generated A-algebra and C is a finitely generated B-module, then C is a
finitely generated A-algebra.

Proof. Let x;, i = 1,--- ,n be generators of C' as a B-module. Then, ¢ = " | b;x; for some b; € B. And

every element in B is just polynomial over y;’s i = 1, -+ ,m with coefficient from A. Thus, b; = f(y1, " ,Ym)
for some n. Thus, every element in C' is a polynomial over y1, -, Ym,Z1, - , Ty With coefficients from A.
Thus, C is a finitely generated A-algebra (by letting z;z; = 0 for any 1, j.) O

1. Since A is not Noetherian, ¥ is nonempty. Now let {a;} be a chain of ideal in X. Let a = | J; a;. Then
a is an ideal (We did this kind of argument in the previous problems.) Moreover, a is not finitely
generated; if it was, then (1, - ,2,) = a. Then, Im € N such that zy,--- ,z, € a,, by definition
of a. However, this implies a C a,, = a, hence a,, is finitely generated, contradiction. Thus, a € X.
Hence, by Zorn’s lemma ¥ has a maximal element.

Now let p be such a maximal element in 3. Suppose it is not a prime. Then, zy € p but x,y & p
exists. Then, a+ (x) contains a strictly, thus it is not in ¥ (otherwise, a is not maximal.) Thus, a+ (z)
is finitely generated, thus ag + (x) = a + (z) for some finitely generated ideal ay. Also, any minimal
generator of ag should be contained in a since they are not in («). This implies ag C a.

Also, as hint suggested, a D ap +z(a: z) and if y € a C a+ (x) = ag + (), then y = yo + 2z for some
z € A,yo € ap. This implies zz € a, thus z € (a: x). Hence, y € ag + z(a : x), thus a = ag + z(a : z).
Since y € (a: z), (a: x) strictly contains a, it is finitely generated. This implies a is finitely generated,
contradiction.

2. By Exercise 1.5 ii), if a, is nilpotent for any n, then f is nilpotent. Conversely, by Corollay 7,15,
Im € N such that 8™ = (0). Hence, f™ = 0.
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3. i) = 4i): By Proposition 4.8, either (S7!a)*=a = (a:1) or A= (a: a) for some a € AN S. Pick
z=1ora.
ii) == iii): Let S := {1,2,2%,---} for fixed z € A. Then, (S7!a)¢ = (a: 2¥) for some k € N. Also,
by definition,

U(a:xi):{aGA:xiaea}:{aGA:a/lzb/xiforsomebea}:{aEA:a/lGae}:(Sfla)c.

ieN

Hence, (a: 2") = J;cy(a : @), thus the sequence is stationary. Since 2 was chosen arbitrarily, done.

i)

= ¢): Without loss of generatliy, assume a = (0) (by thinking A/a as a ring instead of A.)

Let zy = 0 € (0) and y # 0. Then, Ann(2™) is stationary, this implies that Ann(z") = Ann(z"*!)
for some n € N. Now, let a € (y) N (™). Then, ar = 0 and a = bz". Thus, bz""! = 0 implies
b € Ann(z"*!) = Ann(z"), thus a = bz™ = 0. Thus, (y) N (z") = 0. Since (0) is irreducible and
(y) # 0, ™ = 0. This shows that (0) is primary.

4. T refer [4] for this exercise.

(a)

Let A be the ring given in the problem. Then, any element in A is a form p(z)/q(z) with
p(2),q(2) € C[z] such that g(z) has no zero on |z| = 1. Thus, ¢(2) is not in an ideal p = (z—a)q|=1-
Notes that p is prime; since if fg € p but g € p, then by splitting f and g into linear ones, we can
conclude that g does not contain any of (z — a) for any |a| = 1. Thus, f should be divisible by
one of (z —a), thus f € p. Hence, S = C[z] — p is a multiplicatively closed set. Now, A = S~1C[z]
by construction. Since C is Noetherian, C[z] is Noetherian by Hilbert Basis theorem, thus its
localization A is Noetherian by Proposition 7.3.

Let A be the ring given in the problem. Then,

A={feC[z]: f= Z cpx’ with liﬂsolip V]en] < 00} C C[[2]].

neN

Notes that A is closed under addition and multiplication. (To see this, just pick 2 from intersection
of convergence interval of two functions in A and plug in to the subtraction or product of them.
This implies they have positive convergence of radius, thus are in A.)

Now we claim that

Claim XLVIIL In C[[2]], (f) = (2°"%)) where ord(f) is the smallest n € N such that ¢, # 0.
Thus, any ideal in C[[z]] is (2*) for some k € NU {0} or 0. Moreover, if f = 2°"4)g with g is
unit, then g has the radius of convergence greater than or equal to f.

Proof. Notes that f = 2°9)g for some g with ord(g) = 0. Thus, g has nonzero constant
term. By Exercise 1.5 i), g is unit in C[[z]]. Hence, fg~' = 2°"4f). Hence, since C[[z]] is
Noetherian, every ideal is finitely generated, then we can assume that those generators are comes
from {0,1, 2,2, .-}, therefore it is principal.

For the second one, notes that for any 2 which is in the interval of convergence of f, z°*4(f) is
convergent. Thus, g(z) should be convergent series. Since x was chosen arbitrarily, g has the
radius of convergence greater than or equal to f. O

Now, let f € A. Then, f = 2™g by the proof of above claim for some m € N, g is unit with g € A.
Thus, (f) = (2™) in A. Hence A is PID, thus Noetherian by definition.
Let A be the ring given in the problem. Then,
A={feC[z]: f= Z cpx™ with limsup ¥/|e,| = 0} C Cl[2]].
n—oo

neN
By the same argument, A is a subring of C[[z]].
Notes that sin(z)/z = [[o—,(1 — ng—; Let fn == [[5=, (1 — 22 Then, mzf1 = sin(rz). Thus,

n=1

lim,_, |fn| = 0. Suppose 3g € C[[z]] such that gfn(;) # 0. nThen, lim,_,, |g(2)] = co. Thus
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g € A since it should have the radius of convergence less than n. Thus, from f,1|fn, we know
(fn) is contained in (f,+1). However, f,g = fnt1 implies g € A by this argument. Thus, (f,) is
strictly contained in (f,+1). This shows that A has infinite ascending chain, contradiction.

(d) In this case, the desired ring is A = C + (2**1) € C[z]. To see this, let f = > _x c,2™ be such

neN
a polynomial. Since first k£ derivatives vanish at the origin implies that ¢; = -+ = ¢, = 0. Thus,
f € C+ (2F*1). Other direction is trivial. Notes that C[2"*!] is Noetherian by the Hilbert basis
theorem (with variable z"1.) Then A is C[2""!] module generated by {1, z,---,2"}. Hence, A

is finitely generated, therefore Noetherian by Proposition 7.2.

(e) In this case,
A={f(zw) € Clz,w]: %Izzof =0 for any n.}.

A is a ring since product rule of derivation and addition rule of derivation gives that A is closed
under subtraction and multiplication. Let f € A. Then, f =y fa(2)w" for some f,(z) € Clz].
Let a,, = f»(0). Then,

9 “ n, =N
W|zzof = Z a;jtw? ™" = 0.

j=n

This implies a; = 0 for all 7 > n. Since n € N, this implies a; = 0 for all j > 0. Thus,
A = C[z] + (2)Clw]. Thus, w™ ¢ A for any n. Moreover, zw"|zw"*! implies (zw,- -, zw")
contained in (zw, - -- , zw™Tt) strictly. Thus, A has an infinite ascending chain of ideals. Thus A
is not Noetherian.

. Exericse 5.12 shows that B is integral over B. This implies A C B¢ C B. Also, A is Noetherian, B
is finitely generated as an A-algebra, and B is integral over B. Thus we can apply Proposition 7.8
to conclude that By is finitely generated as an A-algebra.

. If K has characteristic 0, then Z C Q C K. (To see this, Z — K by 1z — 1k is injective, thus we
can define Q — K an injective field homomorphism, which gives a subfield of K isomorphic to Q. )
Since K is finitely generated over Z (every ring is Z-algebra), K is finitely generated over @. Thus,
by Proposition 7.9, K is a finite algebraic extension of Q. However, Proposition 7.8 shows that K is
finitely generated as Z-algebra. This implies that Q is finitely generated as Z-algebra, contradiction.

If K is characteristic p # 0, then K contains Z/pZ as a subfield by the map Z — K by 17 — 1x. Since
Z acts on K through Z/pZ, K is also finitely generated Z/pZ-algebra. Then Proposition 7.9 implies
that K is a finite extension of Z/pZ. Hence K is a finite field.

. Corollary 7.6 implies that k[t;,--- ,t,] is Noetherian. Thus, an ideal generated by f, with « € I is
finitely generated. Let g1,--- , g, such generator of the ideal. Then, each g; is a linear combination of
fo with coefficients from k[tq, - - ,¢,]. Thus, by collecting all f,, used in the linear combination of each

g; in a set A, we can see that an ideal generated by A contains the whole ideal, thus A C {f, : a € I}
generates A.

. Since A[z]/(z) = A, Proposition 6.6 shows that A is Noetherian if A[z] is Noetherian.

. Let a # 0 be an ideal in A. Let my,--- ,m, be the maximal ideals which contains a. Choose xg # 0 in
a and let my, -, m, ;4 be the maximal ideals which contains zy. Since m, 41, -+, m, 4, do not contain
a, there exists x; € a such that z; & m,;; for j € [s]. Since each A, is Noetherian for ¢ € [r], the
extension of a in A, is finitely generated. Thus, there exists xs41, - ,2¢ in a whose image in An,
generates the extension of a for all 4 € [r]. Let ap = (zo,---,2;). Then, ap and a have the same
extension in Ay, since, if m = m; for ¢ € [r], done. Otherwise, if i =r +1,--- s, then a§ = (1) = a°
since a and ag an element outside of m;. For any other maximal ideal m, each a and ay also has
an element in A — m, thus their extension is (1). Thus, extension of a and ag are the same in the
localization by any maximal ideal. By Proposition 3.9, this implies ayg = a.

94



10.

11.

12.

13.

14.

15.

In Exercise 2.6, M[x] 2 M Q) A[x]. Notes that M and A[z] are Noetherian (by Hilbert basis theorem.)
A
Thus, M @ Alz] is Noetherian by Corollary 6.4. Since M ) A[x] is homomorphic image of M & A[x],
A

thus it gives an exact sequence

0 — ker(M @ Alz] —>M®A )= M@ Az —>M®A

By Proposition 6.3, this implies that M @ A[z] is Noetherian.
A

Let A = [],enZ/2Z. As we've seen in the proof of the Exercise 6.12, A is not Noetherian. Now let
p be an arbitrary prime ideal of A and think A,. If x € A,, then z is of form (zo,---)/(yo,---) with
y = (yo,-++) € A—p. Also notes that #? = x since (z3,---) = (zg,---) for any elements (o, --) in A.
Assume that x € pA,. Then, still, z2 —z = 0. This implies (z — 1)z = 0 where 1 denotes multiplicative
identity of A,. If x is nonzero, then (z — 1) must be zero since A is integral domain, thus localization
of it is also integral domain. This implies that there exists (zg,---) € A — p such that

(Zo,"')(l'(),"'):(yo,"‘)»

However, since (zg,---) is in p, this implies (yo,---) € pN A —p, contradiction. Thus, pA, = 0. Thus,
any localization of A by prime ideal is actually a field. Therefore A, is Noetherian.

By Exercise 3.16 condition i), a®® = a for all ideal a of A. Thus, a + a® is an injective map. Hence let
a; Cay C .-+ be an ascending chain of ideal in A. Then, a§ C a5 C --- is an ascending chain of ideal
in B, which must be stationary at some points. Thus, its contraction, which is the original ascending
chain in A, must be stationary from injectivity of the map a — a®. Hence A is Noetherian.

By Exercise 3.21 iv), fibers of f* at p € Spec(B) is Spec(k(p) Q B) = Spec(B,/pBy). Also, since f is
A

of finite type, B is finitely generated A-algebra, thus B is finitely generated f(A)-module. Since f(A)
is Noetherian by Proposition 7.1., B is also Noetherian by Proposition 7.2. Thus by Proposition 7.3,
By is Noetherian, therefore B, /pB, is Noetherian by Proposition 6.6. By Exercise 6.8, Spec(B,/pBy)
is Noetherian space.

(Or we can conclude that since B, /pB, is a field, thus Noetherian, therefore Spec(By /pB,) is Noethe-
rian space.)

If f* € a, then f™(V) = {0} by construction of V. Therefore, f™ € I(V), thus,r(a) C I(V). Conversely,
let f & r(a). Then Jp, a prime ideal containing a such that f & p by claim Let f be the image
of fin B = A/p. Let C = By = B[1/f]. Let m be a maximal ideal of C. Since A is finitely generated
k-algebra, so does B, so does C' and C'/m. (Generators are image of ¢1,--- ,%, in C/m.) Proposition
7.9 implies that C’/m k. Now let z; be image of ¢; in C'//m. Then, f(x17~ -, Zn) # 0, since image
of f under the map A - B — C — k is exactly f(x1,---,2,), i.e., evaluation map. but since f is
converted to unit in C, so is f(z1, - ,z,). However, (z1, -+ ,z,) € V since p contains r(a), therefore
the evaluation map gives zero for any polynomial in a.

i) = 1i): By Proposition 2.19 iv), for any injective module map f: M — M', M ®A — M’ ® Ais

just the same f, so A is flat A-module. And direct sum of flat module is flat by Exerc1se 2.4. So A™
is flat for any n € N.

1) = 1i4i): Proposition 2.19 iv) implies it.
iti) = 1v): Since m@Q M — A Q) M is injective, this induces a short exact sequence
A A
O—>m®M — A®M — A/m®M—> 0.
A A A

Notes that Tor{'(A/m, M) := ker(m @ M — A& M) = 0 by definition of Tor.
A A
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16.

17.

18.

iv) = 14): Let x1, -+ ,2, be elements of M whose image in M/mM form a k-basis of this vector
space. By Proposition 2.8, the x; generate M. Let F be a free A-module with basis eq,--- ,e, and
define ¢ : F — M by ¢(e;) = x;. Let E = ker(¢). Then, the exact sequence

0O—>FE—>F—>M-—0

gives us an exact sequences
05 kQE—kQRF 2% kR M 0.
A A A

Since k = A/mA, so kQF = (A/mM)" and kQ M = (M/mM)™ are vector space of the same
A A

dimension over k = A/mA, it follows that 1 ® ¢ is an isomorphism (since in this case 1 ® ¢ is a vector
space map (as A/mA-module) thus surjectivity with the same dimension implies isomorphism.) Thus,
k@ E is zero dimensional k-vector space, thus 0. Notes that F is finitely generated A-module, thus

A
F is Noetherian by Proposition 7.2. Thus, By Proposition 6.2, E is finitely generated since E is a
submodule of F. Also, A is local ring, thus m is Jacobson radical. And E/mE = 0 implies mFE = E.
Thus By Proposition 2.6 (Nakayama’s lemma) F = 0. Thus, ¢ is isomorphism. Hence M is free.

i) = ii): A, is a local ring and Noetherian by Corollary 7.4. Also, M, is still finitely generated as
Ap-module, by identifying a generator x as x/1. Also, by Proposition 3.10, M, is a flat Ap-module.
Hence, by Exercise 7.15, M, is free Ap,-module.

i) = iii): Clear.
#41) = 1): Free implies flat by Claim and apply Proposition 3.10.

In a similar manner, define irreducible module; suppose N C M. Then N is irreducible module if
there are no two proper submodules of M whose intersection is N. In other words, if there are two
submodules L', L? whose intersection L' N L? is M, then L' = M or L? = M.

Lemma 7.11-1. In a Noetherian module, every submodule is finite intersection of irreducible modules.

Proof. Suppose not. Then the set of submodules of N for which the lemma is false is not empty.
Also, every chain of submodule in the set is stationary by Noetherian property of N. Thus by Zorn’s
lemma, the set has a maximal element, say M. Thus, M is reducible; otherwise M itself is a finite
intersection of irreducilbe module. Thus, M = L'NL2. Hence, each of L' and L? is a finite intersection
of irreducible ideals, by maximality of M. Therefore so is M, contradiction. O

Lemma 7.12-1. In a Noetherian ring every irreducible module is primary.

Proof. By passing to the quotient module, it is enough to show that if the zero module is irreucible
then it is primary. (Notes that M is Noetherian, then the quotient is Noetherian by an exact sequence
0+ N— M — M/N — 0 and Proposition 6.3. ) Let = be a zero divisor of N such that zy = 0
for some nonzero y € N. Then submodule 0 C Anny,(z) C AnnM(x2) -+« form an ascending chain.
By the a.c.c., this chain is stationary. We have Annps(z") = Annys(2"t1) for some n € N. Thus,
for any a € A, z(ay) = a(zy) = 0. Also, if ay € 2" M, then ay = x"b for some b € M. Hence,
2"b = 2(2"b) = way = 0. Thus, b € Annps (2" ™) = Annys(2"). Therefore, ay = 2"b = 0. This
implies that (y) Na™M = 0. Since (0) is irreducible submodule and (y) # 0, this implies "M = 0.
Thus, z is nilpotent. By definition in Exercise 4.21, this implies that zero module is primary. O

i) = ii): By Exercise 7.17, zero module has a primary decomposition. Let Ny N--- N Ng be an
irredundant primary decomposition. (We can get irredundant decomposition by get rid of redundant
one.) Then, without loss of generality, let p := rpr(Ny). let Nf = ﬂ;;l Nj. It suffices to show that
p = Ann(z) for some z € M. From irredundant condition, Nf ¢ N;. Let y € Nf\ N;. Since A is
Noetherian, and r(Ny : M) = p, by Proposition 7.14, there exists m € N such that p™ C (N; : M).
Hence, for given y € M, there is m € N such that p™y C N;. Suppose this m is the smallest one; i.e.,
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p™ C (Ny:y) but p™~1 & (N7 : y). Then, x € Ny \ p™ 1y, such that x = ay for some a € p~ 1. Since
y € Nf, px C p™y C Ny N Nf = 0. Hence, p C Annp,(x).

Conversely, every elements in (Ny : ) is zero divisor of M/Nj. Since N; is primary, (N : ) is
subset of nilpotent on M/N;. Thus, (N : ) C p. Hence, Annp(z) 2 (Ny : z). This implies
Anny(x) = (Ny : ) since Ny contains zero module. Thus, p = Ann,,(z), as desired.

i) = ii): Notes that p = Ann(z) = ker(4 — Ax) by definition of annihilator. Thus, A/p =
A/ Ann(z) = Az C M by the first isomorphism theorem.

iii) = i) Let x #0 € N =2 A/p, a submodule of M isomorphic to A/p. Now notes that az = 0 if
and only if a € p since = can be identified as a nonzero elements in A/p. Thus, Ann,/(z) = p.

i) = 1i): By Exercise 7.17, 0 is decomposable. By Theorem 4.5% which we proved in the Exercise
4.22; all prime belong to 0 are all prime ideals in the set {r(Ann(y)) : y € M}. Since Ann(z) = p,
r(Ann(z)) = p. Hence, p belongs to 0.

For the last statement, start with the fact that 0 is decomposable by Exercise 7.17. Hence, fix a
prime ideal p belongs to 0, and take M; be the submodule of M isomorphic to A/p. Now, for M/M;,
which is Noetherian by Prooposition 6.3 with 0 — M; — M — M/M; — 0, we can do the same
thing to have My/M; such that My/M; = A/p’ for some p’ prime ideal. Thus this gives an ascending
chain 0 € M; € My C ---. Since M is Noetherian, this chain stabilizes at some point, say n. We
claim that M,, = M. Otherwise, M /M, is Noetherian by Proposition 6.3, thus 0 module in M /M,
is decomposable, thus we can generate M,, 1 which is strictly greater than M,, in the same manner,
contradiction. Thus, M,, = M.

Since ideal is a module, it suffices to show that when N is a submodule of a Noetherian module M
with two minimal decompositions
T S
N=(B;=()C
i=1 j=1

then r = s and that rp(B;) = ra(C;) for all ¢ (up to renumbering.)

If we assume the hint is true, then, let j; be the number in [s] such that
N:Blﬁ-~-ﬂBi,1ﬁCji NBiy+1N---NB,.

Notes that this one is also an irreducible decomposition. (We don’t need minimality condition since the
hint holds without such assumption, as we will see below). If r < s, then by applying the hint r times,
we can get N = (),_,; Cj,. This implies that ﬂjzl C; is not a minimal decomposition, contradiction.
Thus, » > s. Conversely, if » > s, then we can apply the hint to replacing C;s with Bjs. r > s
also lead us to get contradiction with minimality of ﬂ;zl B;. Thus, r = s. Then, by exercise 4.22,
{ram(B) Yy = {rm(Cy)}i_,. After suitable renumbering (it is possible since it is finitely many), we
may assume that rp(B;) = ra(C;).

To show the hint, let i € [r] and let Bf := ﬂ;;ék B;. Then, define N; = B{NCj forall j =1,---,s. Since
each Bj contains N, (;_; N; = (";_; C;)NBf = N. Let m; : M — B; the canonical projection. Then,
m—(ﬂ;:l N;) = mi(N) = 0 since N is submodule of B;. Thus, m;:1 m;(N;) form a decomposition of
zero module in M/B;. Moreover, since B; is irreducible, zero module in M/ B; is irreducible; otherwise,
using 1-1 correspondence between submodules of M/B; and submodules of M containing B;, we can
show that B; is reducible, contradiction. Hence, the decomposition ﬂ‘;:l 7;(IN;) implies that 3k such
that m; (V) = 0. This implies that Ny C B;. Thus, Ny C N, which shows N, = N by construction.
This is proof of hint.

(a) If E is a finite union of sets of the form UNC where U is open and C'is closed, then E = UNC for
some open and closed set (since finite union of open is open and finite union of closed is closed)
and by definition U, C € %, so is F since .% is closed under finite intersection. Conversely, notes
that % contains all closed subsets, since it is closed under complement and has all open sets of
X. By intersecting with X, which is clopen, we regard that closed sets and open sets are of form
U N C where U is open and C is closed. Now, all finite intersections of sets in .# also of form
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22.

23.

UNC since (U NC1)N(UsNCy) = (U NU3) N (Cy N Cy), which is intersection of open and closed
sets. Thus, F should have a form U NC.

(b) If E contains a nonempty open set, then by Exercise 1.19, the open subset is dense, so is E.
Conversely, suppose E is dense. Since = UNC, this implies X = U N C. From the definition of
closed set, C = C. By exercise 1.19, U = X. Thus, UNC CUNC = X NC = C. This implies
UCX=C,thus E=UNC =U, hence E contains a nonempty open set.

Suppose E ¢ #. Then, EN X = E. Thus, if we let ¥ be collection of closed sets C' such that
CNE ¢ %, then X € ¥. By definition of Noetherian space, ¥ has a minimal element, say Xg.

We claim that X is irreducible. By claim II, it suffices to show that any two proper closed set of X
cover it. If Oy, Cy are proper closed set cover Xy, then (ENCy), (ENCy) € %, thus (ENCy)N(ENCY) =
EnNXye€ %, contradiction. Thus X is irreducible.

If ENn Xy € Xo, then by minimality of Xo, EN EN Xy € #. However, we claim that ENEN Xy =
E N Xy. Notesthat ENENXg 2 EN Xgis clear. Let x € ENEN Xy. Then, x € E, so we need to
show that = € X. Since x € E' N xg, every open neighborhood U of = contains an element y € £ N Xj.
This implies that U meets X, for every open neighborhood U. Thus, z € X;. Since z is already in E,
x € ENXy = EN Xy since X is closed set. Therefore, ENXo=ENEN X, € .% gives contradiction.

On the other hand, assume that £ N X, contains a nonempty open subset of Xy, say Uy = U N X,
for some open set U of X. Then, Uy € & by construction, and U N X contains E N Xg \ Uy =
EnXonU§=ENXoN(UNXy)®=ENXoN(U°UXS) =ENXoNU¢°. (Also notes that U°NXy € F
since it is closed.) This implies that

ENXo=UyU(ENXo\Up) = (UNXo)U(ENXoNU®).

By Exercise 7.20 i), E N X is finite union of sets of form U N C, thus E N Xy € %, contradiction.
Thus by contrapositive, if RHS holds then E € .%.

Conversely, if £ € %, then either E contains a nonempty open set of Xy or E is not dense in Xy, by
Exercise 7.20 ii). This is just restatement of RHS.

If F is open in X, then N X is open in Xy. Thus, by Exercise 1.19, either N Xy is empty or dense
in Xy. Convesely, suppose that E is not open. Then, E N X = E is not open. Let ¥ be collection of
closed set C such that £ N C is not open in C. Since ¥ is nonempty, and X is Noetherian, there is
a minimal element, say Xy. Moreover, by the same argument as in the proof of Exercise 7.21, X is
irreducible. Notes that F N Xy # () since @ is open in Xy. Suppose that £ N Xy contains a nonempty
open subset Uy = U N Xy of X for some open set U of X. Let Cp = Xo — Uy = U5 N Xo = U N Xo.
Then, Cy N E is open in C' by minimality of Xy. Hence, Cy N E = U; N Cy = Uy for some open set Uy
of X. Then,

EnXy = (UomEﬁXo)U(CoﬂE) = (UoﬁXo)U(UlﬂUcmXo) = (U0UU1QUC)QX0 = (UoﬁU1UUomUc)ﬁXo

Thus, £ N Xy is open in Xj, contradiction.

By Exercise 7.20, it suffices to take F = U N C where U is open and C'is closed in Y. Then C = V(a)
for some radical ideal a, thus, by replacing B with B/a, using the homeomophism ( Exercise 1.21 iv)
)Spec(B/a) = V(a) and homomorphism A — B — B/a, we may assume that F is open in Y. Notes
that Y is Noetherian by Corollary 7.7. Hence, E is quasi-compact by Exercise 6.6. Thus E is covered
by finite union of basic open sets Y, for some g € B. By Exercise 3.21, Y, is homeomorphic to Spec(By).
Thus, E is covered by finite union of basic open sets of the form Spec(B,). If we show that each image
of Y, is constructible, then image of E is constructible since Im(£) = Im(Y, U---) =Im(Y,)U---, and
collection of constructible sets are closed under finite union. Thus, we can just assume that £ =Y,
by replacing B with B, using A =+ B — B,.

Let Xo be an irreducible closed subset of X such that f*(Y) N Xy is dense in Xy. (If f*(Y) N Xy
is not dense in Xj, then nothing to prove since it is a condition in Exercise 7.21.) By Exercise 1.20,
Xo = V(p) = Spec(A4/p) for some minimal prime p in X. Then, f*(Y)N Xy = f*(f*1(Xo)); to
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see this, let p’ € f*(Y) N Xo. Then, 39 € Y such that f9 € X,. Thus, q € f*~(Xp), therefore
p’ € f*(f*1(Xo)). Conversely, if p’ € f*(f*~1(Xo)), then p’ € Xo. Also, p’ is in the image of Y, thus
pre fr(Y)n Xo.

Moreover,

) =TV R) = V) =

Ezxercisel.21ii) Ezxercisel.2liv)

Spec(B/p¢) = Spec(A/p Q) B)
A

(To see last equality, notes that a(1® 1) € A/p@ B is equal to (¢ ® 1) and (1 ® f(a)). Thus, a € p
A

iff a(l®1) = 0iff (1 ® f(a)) = 0. Also, if b € p°, then b = Z?:l bif(a;) for all a; € p, thus
1®bif(a;) =a;(1®b;) = (a; ®b;) = (0®b;) = 0. This shows the equality.

From this equality, we can see that the restriction of f as f: A/p — A/p @ B = B/p which induces
A

f* Spec(A/m?B) = V(p°) — V(p) = Spec(A/p). Since f*(Spec(A/m?B)) = [*(f*(Xo)) =

f*(Y)N Xy is dense by assumption, Exercise 1.21 v) says that ker(f) C R, a nilradical. Since A/p is
integral domain, this implies R = 0, thus f is injective. map.

Now we replace A with A/p, and B with B/pc. Then, we just assume that f : A — B is injective
and A is integral domain. If Yi,---,Y,, are irreducible components of Y, it is enough to show that
some f*(Y;) contains a nonempty open sets in X, to use criterion in Exercise 7.21. Since X is assumed
to be Xy, which is irreducible, and f*(Y) is assumed to be dense in X = Xy. Thus, X = f*(Y) =
Uj—1 f*(Y5) = Uj—, f*(Y;) since it is closure of finite union. Since X is irreducible, there is a fixed j
such that f*(Y;) = X, thus f*(Y;) is dense in X. Hence, by applying Exercise 1.21 with the fact that
Y; = V(b) for some minimal prime of B (from Exercise 1.20), we can think that A — B — B/b is still
injective. Thus, by replacing B with B/b (thus Y with Y;), we may assume that B is integral domain
and f is injective. Now it suffices to show that f*(Y) contains an open subset of X.

Since A, B are integral domain, and B is finitely generated A-algebra, (from f is of finite type,) thus
B is finitely generated f(A)-algebra. Thus, by replacing A with f(A), A can be regarded as a subring
of B. Then, we can use Exercise 5.21 to assume that there is s # 0 in A such that g : A — Q is
a homeomorphism for which f(s) # 0, then g can be extended to a homomorphism B — €, for any
algebraically closed field 2. Now let p be a prime ideal not containing s. (Such prime ideal exists,
since nilradical as a intersection of all prime ideal is zero in the integral domain.) Then we have a map
g:A— Alp — k(p) — Q where k(p) is a field of fraction of A/p and 2 is algebraically closure of k(p).
Then, since g(s) # 0, by the Exercise 5.21, this g can be extended to B — Q. Let q = ker(B — Q).
Then, gN A = p since it is just restriction of B — Q over A. Thus, p € f*(Y), as an image of q. Thus,
Xs C f*(Y). Done.

Hence, for any irreducible closed set Xg of X, f*(F)N Xy is not dense, or if it is dense, then it contain
an open set. Therefore, Exercise 7.21 shows that f*(E) is constructible.

If f* is open map, then Exercise 5.10 says it has going down property. Conversely, suppose f has
the going-down property. Let Y be a basic open set of Y for some s € B. Then, Y; = Spec(B;) by
Exercise 3.21. Hence, by replacing B with B, we may assume that F = f*(Y) is open in X. By the
going down property, if p is prime ideal of B such that p N f(A) = q and q O ¢, then there exists
p’ € Spec(B) such that p D p’ and p’ N f(A) = q’. In other words, if ¢ € E = f*(Y) such that q C ¢,
then q' € E.

Now, to use Exercise 7.22, let X be arbitrary irreducible closed subset of X and Xy meets E. Then,
if ¢ € EN Xy then every prime ideal contained in q lies in F by going down property. By Exercise
1.20 iv), Xo = V/(p) for some minimal prime p of X. This shows that q contains p, thus p € £ N X.
Moreover, {p} = Xy by Exercise 1.18 ii). Thus, Xo 2 EN Xy 2 V(p) = Xp implies E N X is dense
in Xy. Since E = f*(Y) is constructible by Exercise 7.23, and X is closed thus constructible, so is
E N Xy. By Exercise 7.20 ii), since E N Xy is constructible and dense in Xy, £ N Xy should contain a
nonempty open set of Xy. Thus, by Exercise 7.22, E is open.
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25. By Exercise 5.11, f has going down property. By Exercise 7.24, f* is open map.

26. In modern notation, let M be a module, and (M) be a isomorphism classes of module M, and C(A) =
ZF(A). D(A) is a subgroup generated by {(M') — (M) + (M"):0 - M' — M — M" — 0 is exact}.
K(A)=C(A)/D(A). (M) = (M)+ D in K(A).

27.

(a)

Let A : C(A) - G. Then, if 0 - M’ - M — M"” — 0 is exact sequence, then A(M) =
AM)+ MM, e,

AM') = A(M) + A(M") = 0.

(
Thus, A sends D(A) to 0. Thus, define A\g(y(M)) = A(M). Tt is well-defined since A(D(A)) = 0.
And this is unique; if there is Ay such that A(M) = A\j(y(M)), then Ao agrees with X; for all
~v(M). However, these are all elements of K(A). Thus, A\g = A;.

From Exercise 7.18, for any fixed M, there exists a chain 0 C M; C --- C M, = M such
that M;/M;—1 =2 A/p;. Thus, 0 - M;_1 — M; — A/p; — 0 is a short exact sequence. And
M, = A/p;. Thus, M; = @;:1 A/p;. Therefore, K(A) is generated by v(A/p) for all prime ideal
p.

If A is a PID, then for any principal ideal (a) with a # 0, we have 0 - A - A — A/(a) = 0
where A — A is sending x to ax. This implies v(A) — v(4) + v(4/(a)) = 0, thus v(A/(a)) =0
for all @ # 0. Thus, the only nonzero elements of generators of K(A) is v(A/(0)) = v(A) since (0)
is prime in the Noetherian ring. (PID is Noetherian; since every submodule (ideals) are finitely
generated.). Thus, K(A) is an abelian group generated by a single element v(A). Now from the
structure theorem of PID, A™ is not the same as direct sum of A/(a) for any ideal (a). Hence,
~v(A™) is nonzero. Thus, K(A) is infinite cyclic group generated by ~(A), which is isomorphic to
Z.

Notes that every finitely generated B-module is finitely generated A-module; let M be generated
by x1,--- ,x, and B is generated by y1,- -+ ,ym as A-module. (That’s the meaning of f is finite.)
Then, M = {377 bim; : b € B} = {3°7", >0, aiyixj : a; € A}. Thus M is finitely generated
by iy;, (i,5) € [n] x [m].

Also, if 0 - M" — M — M" — 0 is an exact sequence of finitely generated B-modules, then it is
also exact sequence of finitely generated A-modules, since such a change of view doesn’t change
each maps, especially kernel and images. Thus, if we let ¢ : F(B) — F(A), then this induces a
map y4 0ot : F(B) = F(A) — K(A). Hence, by the universal property of i), 3f; : K(B) — K(A)
such that fi(yg(IN) = va o ¢«(N) for any B-module ismorphism classes (N). If g : B — C is
another finite ring homomorphism, then by this argument, we have g : K(C') — K(B) such that
9(v¢(N)) = v(N). Hence, fiogi(vc(N)) = va(N). Conversely, if we construct (g o f);, then
(go i(ve(N) =~va(N). Thus, fiogr and (go f)i agrees on all yo(N) for all N. Since those are
all elements of K(C), fiogi = (go f).

Assume that we already give an free abelian group structure on Fj(A). First of all, if M is
generated by z; for i € [n] and N is generated by y; for j € [m], then M @ N is generated
A

by x; @ y; for (4,5) € [n] x [m]. Thus, M @ N is finitely generated. Moreover, by Exercise
A
2.8.i), M @ N is flat if M, N are flat. Moreover, if M = M’ N = N’ then M Q N = M’ Q N’ by
A A A

[3][p-27]. Hence, we can define tensor product of isomorphism classes as well. Since it is associative
and binary, F(A) with tensor product is a multiplicative monoid, since it has identity (A) as a
flat module. (We already know that direct sum of flat module is flat; see Exercise 2.4.) Also,
since tensor product of flat module over an exact sequence is still exact. This gives a distribution
law on Fy(A).Thus, F1(A) is abelian group with respect to addition (direct sum), multiplication
by tensor product is associative and distributive over addition, and commutative by Propostion
2.14 1), and it has multiplicative identity (A). Hence, Fj(A) is a commutative ring. Moreover,
D (A) is ideal; since for any generator of Dq(A), say 0 - M — N — L — 0 exact, tensor with
any flat module over this exact sequence is still exact (thus in the generator of D;), thus again it
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is element of D;(A). Moreover, D1(A) has already abelian group structure inherited from original
definition. Hence, D;(A) is ideal of Fy(A). Thus, Ky = F1(A)/D1(A) is also a commutative ring,.
Notes that we can do the same thing on F(A) and K(A), thus K(A) is a commutative ring
containing K4 (A) as a subring.

Notes that tensor product is distributive over direct sum, and it is associative, and tensor with
identity doesn’t change anything. Thus, it satisfies module axioms. Thus K(A) is K;(A4)-module
by tensoring.

Suppose A is local ring. Then, by Exercise 7.15, every flat module is free. Thus, F;(A) is a set
of all free modules over A. Thus, F;(A) is an infinite cyclic group generated by the isomorphism
class (A). Thus, Fy(A) 2 Z.

By Exercise 2.20 |3|[p.29], if M is flat and finitely generated A-module, then B Q) M is flat and

A
finitely generated B-module. Thus, we can define a map g : F(A) — F(B) by sending M to
B M. (It is well-defined since isomorphism is preserved under tensor.) Moreover,
A

Claim XLIX. B Q)(—) preserves exact sequence
A

Proof. To see this, notes that if f : N — M is injective as an A-module map, then B N —
A
B M is injective; to see this, let b ® n in the kernel. Then, b =0 or f(n) =0, i.e., n = 0 since
A
f is injective. Thus, ker(BQ N — BQRM)=0Q N UB QR0 = {0® 0} by definition of tensor
A A A A

product. Also, surjectivity is preserved; let f : N — M be a surjective map. Then, for any b @ m
in B M, from surjectivity of f, In € N such that f(n) = M, hence 1 ® f(b®n) =bm.
A

Nowlet0 — N L5 M % L — 0is an exact sequence. Then, 1®gol® f(ban) = 1@g(bf(n)) = b®
g(f(n)) = b0 = 0. Thus, ker 1®g 2O Im 1® f. Conversely, let b@m € ker 1®g. Then, bg(m) = 0.
This implies b =0 or m € kerg. If b =0, then forany n € N, 1 ® f(0®@n) =0® f(n) =0®@m
since both are identified with 0(0 ® f(n)) =0® 0 =0(0®@ m). If b # 0, then m € ker(g) = Im f,
thus 3n € N such that f(n) = m, therefore 1 @ g(b@m) =b® g(m) =0 g(f(n)) =b®0=0.
Hence, ker1 ® ¢ CIm 1 ® f, done. O

Thus, vp o g is additive map. Therefore, yg0g : F(A) — F(B) — K(B) induces a map
f': K(A) — K(B) by the universal property in Exercise 7.26 i) such that

froya(M) =g o g(M).
If h : B — C is another ring homomorphism with C' is Noetherian, then we have a map h' :
K(B) — K(A) such that h'oyg(M) = v¢(C @ M). Thus, h' o f'(ya(M)) = h'(ypo (BQ M)) =
B A
Yo (CQ(BQ M)). Now, by apply this universal property on ho f, we get
B A

(ho 1) 0va(M) =00 C Q) M.
A

Now, notes that C' @ (B Q M) = (CXB)Q®M =C® M. Thus, (ho f)' =h'o f".
B ~ A A

A Ezxercise2.15 B

Since f is finite ring homomophism, Exercise 7.26 iv) gives fi. Then, let y4(M) € K1(A),y5(N) €

K(B). Then, f'(ya(M)) = ’yB(B(%M),Nowbydeﬁnedinii), FH(ya(M))yp(N) :'yB(B@M)fYB(N)

’)’B((B§M) gl\/‘). Thus,

A (ra(M))vp(N)) = fitvs(BQ) M) Q) N)) = 71a(B Q) M) (KQ) N).

A B A B
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where (BQ M) @ N is regarded as an A-module. Also,
A B

Ya(M) fi(y3(N)) = ya(M)ya(N) = ya(M Q) N)
A
by regarding N as an A-module. Now notes that

BR)M)Q)N = (M) B)X) N = MEBERN)=MEK)N
A B A B

Proposition 2.14 i) Exercise 2.15 A B A

by regarding N as an A-module. Thus, fi(f'(y4(M))ys(N)) = ya(M) fi(ys(N)) as desired.

In other words, regarding K (B) as a K1(A) module by restriction of scalars, the homomorphism
fi: K(B) — K(A) is a K1(A)-module homomorphism. (The above equation is just showing a
condition of module map, by acting K1(A) on K(B) via f'.)

Artin Rings

. For fixed ¢, Proposition 7.14 implies that 3r; € N such that p;* C q;. Then, by Theorem 4.12x 6,

(ri) — T —
b = Sp(p) < Sp(a5) NP,
Definition Theorem 4.12%, 6 Theorem 4.12x%, 3

qi

where Theorem 4.12x in [4].

Suppose ¢, is an isolated primary component. Then p; is a minimal prime. Notes that A,, is a
Noetherian local ring by Proposition 7.3. By Corollary 3.13, p; A, is also minimal. Since m := p;A,,
is maximal by construction, this implies that Ap, has only one prime ideal and Noetherian. Thus, by
Theorem 8.5, Ay, is Artinian. Moreover, m is both nilradical and Jacobson radical. By Proposition
8.4, m is nilpotent. This implies that 3r € N such that m” = 0.

Honestly, I don’t know how m” = 0 implies q; = pgr) for all large r. Instead, I refer [4]. Notes that
p) NN 295 C ﬂ;;l q; = 0 is another primary decomposition of 0 since p("*) is p-primary by Exercise
4.13 i). By Corollary 4.11, isolated primary component is unique; thus p(™) = q;. (It holds for all
> ry.)

Instead, if q; is an embedded primary component, then p; is not a minimal prime ideal, thus p;A,,
contains a prime ideal of Ay, by Corollary 3.13. Thus, A, is not Artinian, but Noetherian local ring.
By Proposition 8.6, (p;Ap,)" are all distinct. Thus, its contraction p;)(") are all distinct. Hence in
the given primary decomposition, since pi)(r) C q; for all » > r;, we can replace q; by any of the
infinite set of p,;-primary ideals pi)(r) where r > r;, and so there are infinitely many minimal primary
decompositions of 0 which differ only in the p;-components.

. 1) = ii): A has only finitely many prime ideals which are all maximal by Proposition 8.1, 8.3.
This implies Spec(A) is finite. Also, it implies that all singleton in Spec(A) is closed. Hence, each
singleton is open because Spec(A) minus one element is a finite union of closed sets so closed, hence
its complement, which is a singleton, is open. Thus, Spec(A) has discrete topology.

i) = iii): Clear.
#91) = 14): In this case, A is Noetherian ring where every prime ideal is maximal. Thus, dim A = 0.
Hence, by Theorem 8.5, A is Artinian.

. By Theorem 8.7, A is product of Artin local ring. For each component B of the product, A — B is a
projection map, thus by sending generator of A as an k-algebra, we can conlude that B is also finitely
generated k-algebra. Thus, if we show this statement for all Artin local ring, then, A itself is a finite
k-algebra since it is product of finite k-algebra, thus again finite. (Generator of A as finitely generated
k-module is just collection of generators of all components of the product.)
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Thus, assume A is Artin local ring. Then, it has the maximal ideal m, thus A/m is a field, which
is finitely generated over k (by sending generators of A as k-algebra to A/m. By Corollary 7.10,
A/m is a finite algebraic extension of k, i.e., dimy(A/m) < oo. Notes that A is Artinian by given
condition i), and Noetherian since it is finitely generated k-algebra and Corollary 7.7. Thus, A is
Noetherian A-module, hence by Exercise 7.18 iii), there is a chain of submodules 0 = My € M; C
-+ C M, = m such that M;/M;_; = A/p, for some prime ideal p; of A. Since A is Artin local ring,
all p, = m. Hence, 0 - M; — M;;1 — A/m — 0 is exact sequence. Thus, as a k-module (i.e.
k-vector space), these are still exact since A-module map can be viewed as a k-linear transform. Thus,
dimg M; + dimy(A/m) = dimg M;41. Thus, dimg m = dim M,. = rdimg(A/m) < co. Lastly, we have
an exact sequence 0 - m — A — A/m — 0, and this also can be viewed as k-module exactness,
therefore dimy A = dimy m + dimy (A/m) = (r 4+ 1) dimy (A/m) < co. Hence A is finite k-algebra.

i4) = 14): Since A is finite k-algebra, A is finitely generated k-module, i.e., k-vector space. Thus, by
Proposition 6.10 iv) A satisfy d.c.c. thus Artinian.

.4) = i) = ii): By Exercise 3.21 iv), for each p € Spec(4), f*'(p) = Spec(B,/pB,) =

Spec(k(p) @ B). Since i) implies B is a finitely generated as an A-module, assume that B = {>"" | a;b; :
A

a; € A}. Then, every element in k(p) % B is of form 2?21 ki @ a;b; = Z;‘Zl ki @b =3"_ k@b

j=1™"

Thus, k(p) @ B is a finitely generated k(p)-algebra, and dimension as a k(p)-vector space is n.
A

(In detail, first of all, generate k(p)™ and give a map sending b; to e; in k(p)", where {e;}is the
standard basis of k(p)™. This is k(p)-vector space map since it preserves scalar multiple (over k(p))
and summation. Moreover, it is surjective, hence injective as a vector space. Thus, it is isomorphic as a
k(p)-module. Also, multiple in this ring is defined as (k®b)- (k'®b) = kk'@bb as in |3][p.30]. And since
B is an algebra, we have b;b; = >,_; a;jxby, for some a;;, € A. Thus, for any k € k(p), k' @b;, k" @b; €

k(p) @R

E((K @b;) - (K @b;)) =k K k'@ @ b) = kK" @51 @ b,

=1 =1
(K @b;)) - (" @b;) = kk'K'ag @ by) = kk'E' > @ @b
=1 =1

(K @b;) - (k(k' @b;)) = kk'K'ag @ b) = kk'E"> @ @b
=1 =1

Thus, multiple is k(p)-bilinear. Therefore, k(p) @ B is a finite k-algebra, which is iii); Exercise 8.3
A
implies that k(p) @ B is Artinian. Exercise 8.2 implies that Spec(k(p) @ B) is discrete. Thus f*~!(p) =
A A
Spec(B,/pBy) = Spec(k(p) Q B) is discrete, which is ii);
A

iii) = 4i): By Exercise 3.21 iv), Spec(B @ k(p)) = f*~1(p). By the same argument using Exercise
8.3 and 8.2, it is discret subspace of Spec(BI)Lx.

iii) == iv): By Exercise 3.21 iv), Spec(B @ k(p)) = f*~1(p). By iii), we know that B @ k(p) is a
finite k(p)-algebra. Hence, by Exercise 3), B% k(p) is Artinian. By Exercise 2 ii), Spec(Bﬁ? k(p)) is
finite.

For the last question, since f may not be a finite type, we cannot use the Remark in [3][p.60] (In this
case, f is of finite, thus fibres of f* are finite by this Exercise.) For the counterexample if f is not
a finite type, I refer [4]; let k be a field which is not algebraically closed, and think k, an algebraic
closure of k. Then, f : k — k is a canonical injection. Which leads to f* : Spec(k) — Spec(k). Since

103



Spec(k) and Spec(k) are both singleton, thus they are finite, and f* is also finite map. (It maps zero
to zero, since f~1(0) = (0) because f is injection.) However, f is not finite, i.e., k is not finitely
generated k-vector space unless dimy (k) < co. And as you can see, if & = R, then k& = C, which is
2-dimensional R-vector space, thus it is finite. However, if £ = Q, then @ is not finite Q-vector space,
since [Q : ¥/2] = n for any n € N and @ contains /2 for any n € N. It holds for F,, Q,, k(t) where ¢
is transcendental element, and so on.

. From Exercise 5.16, there is a linear map m : k™ — k" such that 7| x : X — L is surjective, where X is an
affine variety of k™ and L = k" as a subspace of k™ (thus r < n.) Let B be a coordinate ring of L, which
is isomorphic to k[y1,- - ,y.] by conclusion of Exercise 5.16. Then the lemma says that A is integral
over B, and the map ¢ : B — A is given by f — f ox|x. Thus, we have ¢* : Spec(4) — Spec(B).
Now for given [ € L, m; is the maximal ideal in B consisting of all regular functions which are zero at
I, whose existence was shown in the Exercise 1.27. Then, think ¢*~!(m;); Suppose that p € Spec(A)
is in ¢*~1(m;). Then for any f € p, ¢(f) € my, which implies f o 7|x € m;, which implies that for
any * € X such that 7|x(z) =1, f o 7|x(z) = 0. This implies that f € m, for all z € 7|3'(l). Thus,
definitely, m, € ¢*~!(m;) for all x € m|3'(l). Thus, it suffices to show that the fibres of ¢* is finite;
in that case ¢*~1(m;) is finite for any [, thus there are only finitely many x € X such that 7|x(x) =1
(otherwise, ¢*~!(m;) contains infinitely many m,s, contradiction.) To use the Exercise 8.4, we need
to show that ¢ : B — A is a finite map, i.e., we should show that ¢ makes A be a finitely generated
B-algebra.

And, since A is integral over B, and if we identify B with ¢(B), a subring of A, then B[z; : i =
1,---,n] = A. To see this, notes that A is still finitely generated as a k-algebra over T;s, and B
still contains k in its subring. Thus, A is a finitely generated B-module by Corollary 5.2, since A is
integral over B implies T; is integral over B. Thus, ¢ : B — A is finite since A is finitely generated
f(B)-algebra, which means just A is a finitely generated B algebra, since we define A as a B module
acting by multiplication through f(B). Hence, by Exercise 8.4, fibers of ¢* are finite. Thus, 7r|)_(1 (1) is
finite.

To see that max;cr, Tr\);l(l) is bounded, notes that A = B[z; : i = 1,--- ,n]. Then, for any p € Spec(B),
Exercise 3.21 iv) shows that Spec(A & k(p)) = ¢*~1(p). Since A is finitely generated by x;,i = 1,--- ,n,
B

as we've shown in the proof of Exercise 8.4 i) = iii) == ii), dimgp) AQk(p) = n. Now
Exercise 8.3. implies that A ) k(p) is Artinian, thus Exercise 8.2 ii) implies thatBSpec(A®k(p)) is
discrete and finite. Thus, letBSpec(A®k(p)) = {m;}, for some m € N. Since every pri]fne ideals
in this set is maximal, they are coprirjrgle7 therefore, AQk(p) — [[-, (AR k(p))/m; is a surjective
ring homomorphism by Proposition 1.10. Since A Q) k(p? is finite k(p)—algegra, sois (A k(p))/p by
sending generators of A ) k(p), hence (A& k(p))/]; is a k(p)-vector space, as (A Q) k(p))Byp is a k(p)-
vector space. Since the sﬁrjective ring hom]i)morphism A% k(p) — HZ’;AA% k(pf) /m; is definitely a

k(p)-algebra map therefore a k(p) module map. This implies that the surjective map is actually k(p)-
linear map, therefore surjectivity implies that dimy ([T~ (A @ k(p))/m;) < n. Since AQ k(p))/m; is
B B

nonzero vector space, m is at most n. This shows that |Spec(A Q) k(p))| < n, as desired. Thus all
B

fibres of ¢* is bounded.

.Let q=a; C--- C a, = p be a chain of primary ideal. By taking radical on the chain we assume
that each a; are p-primary. By Noetherian condition, n < oo. Now to see such chain is bounded,
suppose that for each n € N there is a chain ¢ = a,; C -+ C a,, = p. Then, for any two chain
q=0a,1C---Capp,=pand g=dap,1 C - C dypm = P, we can make a chain by intersection, such as

d==0n1 Nap S ap1 Nap2 - Gp1 Napy € Ap2 Nape © - Ay NN = P
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This new chain contain the original length n chain and m chain, thus has length at least m-chain. Thus,
we can assume that the original length n chain can be extended to length m-chain for any m € N.
Thus, by this construction we can make a infinite chain by intersecting all such length n chain with
n € N, contradiction. Thus, the length of chain must be bounded.

Now, if we have a maximal chain C' which is not the greatest length, then by above intersection with
a chain with the greatest length chain, we can refine the C having length n, as the above argument
shows, which is the contradiction of maximality. Thus, all maximal chains have the same length.

(T think [4)’s proof is a little bit suspicious since we don’t know whether primary ideals of A are 1-1
corresponds to primary ideals of (A/q),,/4; at least Proposition 3.9 doesn’t say anything on that matter,
and neither do other propositions in Section 3.)

9 Discrete Valuation Rings and Dedekind Domains

In [3][p.94], if a # 0 is an ideal in A, there is a least integer k such that v(x) = k for some z € a. By
surjectivity of valuation map, 3z, € A such that v(z1) = 1. Thus, v(zz}) = k+n. Now, for any y € A such
that v(y) = k+n with £ > 0, (y) = (zx1) by the previous paragraph of |3]. Hence, y € a. This implies that
the only ideals # 0 in A are the ideals my, = {y € A : v(y) > k}.

In the proof of Proposition 9.2, notes that given condition implies (A) in [3][p.95] since Noetherian local
dimension 1 ring has (0) as its prime ideal, thus all nonzero prime ideals are maximal, and locality implies
that there is only one nonzero prime ideal. And since Noetherian, a minimal primary decomposition of a
consists of only one ideal which is m-primary, thus a is m-primary. For (B) see that otherwise A is Artinian
by Proposition 8.6. Theorem 8.5 says that dim A = 0, contradicting assumption that dim A = 1.

In the proof of ii) to iii) of Proposition 9.2, if z~'m C m, then Ann4p,—1)(m) = 0. To see this, notes that
Am = m implies Annp,-1)(m) N A = 0. Also, z7'm # 0 since ! = b/a thus az™! = b # 0. (Otherwise b €
(a).) Thus m is a faithful A[z~!]-module. And it is finitely generated as an A-module since A is Noetherian.
However, 2~ 'm C A; to see this, since b € m"~1, bm C m™ C a. Thus, b/am C 1/am™ C 1/a(a) C A.

In the proof of iii) to iv) of Proposition 9.2, if m = (z), then T is still a generator of m/m?*. Thus, it form
a basis by Converse of Proposition 2.8. And this converse holds since T still generates M /mM = m/m?, thus
any element in m/m? is of form a7 for any a € A/m, thus m/m? is a vector space generated by a basis {T}.
If T = 0 then it is 0 dimensional. However, by (B), it is nonzero; thus dim; m/m? = 1.

In the proof of iv) to v) of Proposition 9.2, by iv), m is principal, by Proposition 2.8. Thus let m = (b).
Suppose n is the least integer such that a O m™ holds. Then, b~ ! ¢ a but b® € a. By proposition 8.8
applying on A/m", we know that @ is principal, thus a is principal. Say a = (a). Then, 0™ = ap for some
p € A but a = bq for some ¢ € A. This implies b" = bpg. Since A is domain, this implies b"~! = pq. Since
m is prime, p € m or ¢ € m. This shows that p = bp’. Then, b" 2 = p’q. Repeating this argument, we may
conclude that p = b*, ¢ = b*" for some k + k' =n — 1. Thus, a = bg = b¥ 1. This implies that a is a power
of m.

In the proof of theorem 9.5, the author says that any nonzero prime ideal p of A is maximal. To see this
in detail, notes that if p¢ = p N Z is zero, then since (0) C p and (0) is prime ideal since A is an integral
domain (since it is subset of Q) Corollary 5.9 says that p = (0), contradiction. Hence, pNZ # 0. Since Z is
PID, every prime ideal is maximal by Example 3 after (1.6). Thus, by Corollary 5.8, p is also maximal in
A. In conclusion, A is Noetherian domain of dimension one, and integrally closed. Thus, by Theorem 9.3,
A is Dedekind Domain.

In the proof of Proposition 9.7 == part, M = (z"/y) since yM = (2"). Let v(y) = s. Then,
y,x® have the same value, yz~* has value 0, thus unit, thus in A (by definition of valuation ring.) Thus,
(a7 Jy) = (&),

In the other part, m~!a D a since m~'a is an integral ideal, thus for any a/m € m~ta, a/m - m = a also
lies in m~!a. Also notes that in the local domain, m is Jacobson radical.

1. From A is integrally closed, S™'A is also integrally closed by Proposition 5.12. By Proposition 7.3,
S~!A is Noetherian. Moreover, since S™'A C K, a field of fraction of A, S~'A is domain. Since
dimension of A is 1, dimension of S7!'4 is 0 or 1, by Proposition 3.11 iv). If dim S~ A is 0, then every
prime ideal except 0 meets S. Thus S~'A is field, since (0) is the only prime ideal. Otherwise, there
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exists at least one nonzero prime ideal of A not meeting S. In summary, S~'A4 is Noetherian local
domain with dimension 1 which is integrally closed. Then, by Theorem 9.3, it is Dedekind domain.

For the second statement, we need a lemma. (We cannot directly use Corollary 3.15 since (A : M) is
defined over K not A.)

Claim L (|9] Lemma 25.4). Let A be domain, K be a field of fraction of A, and let M, N be fractional
ideal, and let S be a multiplicative subset of A. Then, ST*MN = (S7'M)(S7'N) and S~'(M : N) C
(S™IM : STIN) with equality if N is finitely generated.

Also, if M is invertible, then ST*M~t =S~ A: M) = (S7tA:S71M).

k min;
Proof. Given x € STY(MN), x = @ for some m; € M,n; € N,s € S,k € N. Then, z =
S M ¢ (§71)(STIN). Conversely, if 2 € (ST'M)(S™IN), then o = Y8 ™4™ Let g =

j=1 1 s J=1"s; t;

H?:l s;jtj, and o) = m;n; Hf# s;tj, we have z = 2521 %% = 25:1 % with of € MN. Thus
z € STYMN).

Also, if z € S7Y(M : N), then z = z/s forz € (M : N) and s € S. For any y € SN, y = n/t
for some n € N,t € S. Then zy = an/st with an € M, st € St, thus, 2zS~'N C S~'M. Hence,
z€ (S7IM : STIN). Conversely, if N is finitely generated, say ny,--- ,n,. Then given z € (S~'M :
STIN), write zn;/1 = m;/s; with m; € M,s; € S. Let s = [[s;. Then, szn; € M for all i. Thus,
sz € (M : N). Thus, z = sz2/s € S~Y(M : N), as desired.

Finally, if M is invertible, then S™1(A) = S™Y(M(A: M)) = (S™IM)(S7Y(A: M)) C (S~M)(S71A:
S=IM) = S~1A shows that S~}(A : M) and (S71A : S~'M) are two inverse of S™1M. Hence, by
usual argument about inverse, they are equal. O

By Proposition 3.11 i), ¢ : a — S~ !a is well-defined surjective map from I(A) to I(S7*A). Since A
is Noetherian, every fractional ideal is finitely generated. Thus by the above claim it is multiplicative
homomorphism, since it preserves multiplication and inverse element. Moreover, ¢(P(A)) C P(S~1A)
since for any principal fractional ideal (u) with u € K, S™'(u) := {u(a/s) : a/s € S~1A}, thus
principal. Thus, we can define ¢’ : H — H' by M + ¢(M), where P = P(A),P’ = P(S7'A). To
see it is well-defined, let M and N are two distinct representation of M. Then, M = NQ for some
principal fractional ideal Q. Then, S™!M = (S71N)S~1Q by the above claim, thus S—1M = S—1N
in H'. Moreover, ¢’ is surjective since ¢ is surjective.

. To use the hint “Localize at each maximal ideal” we need a lemma.

Claim LI. Let M, N be two A-submodules of an A-module K. Module equality is local property; i.e.,
M = N if and only if M, = N, for all prime ideal p

Proof. If M = N, then trivial. Conversely, suppose M, = N, for all prime ideal p. Notes that M
contains N iff (N + M)/M = 0. Then, we have an exact sequence

0>M-—->M+N—(M+N)/M—0,
and tensor with A,. Since A, is flat module, we have an exact sequence
0— My, — M, + Ny — (M, + Ny /M,) — 0.

By given condition, M, + N, = M, since they are the same, thus (M, + N,/M,) = 0. Notes that
(M + N)/N)y = (My + Ny/M,) by applying Corollary 3.4 iii) and 3.4 i). Thus, (M + N)/N), =0
for all prime ideal p. By Proposition 3.8, this implies (M 4+ N)/N = 0. Thus N C M. By the same
argument over N, we have M C N. Thus M = N. O

Hence, to see ¢(fg) = ¢(f)c(g), it suffices to show that they are equivalent on A/m for all maximal

ideal m. Thus, we may assume that A be a localization of Dedekind domain by maximal ideal (since
¢(f) in A/m can be seen as ¢(f) where f =ag+ -+ apz™. )
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Thus, we may assume that A is DVR. Let g = bg+- - -+ b, 2™ in Alz]. Then, ¢(fg) C ¢(f)c(g) since any
coefficients in fg is generated by linear combination of product a;b;. To see ¢(fg) 2 ¢(f)c(g), suppose
m = (y) for some y € A. Since Ais DVR, ¢(f) = (3%), c(g) = (y*) for some s,t € N. Hence, v(y) = 1 and
min;ep,) v(a;) = t, min;epy) v(b;) = s. (We use property on [3|[p.94].) Now let i, j" be element in N such
that v(ai) =t,v(bj) = s and for any 0 < ¢ <4',0 < j < j', v(a;) > s,v(b;) > t. Then, the coefficient
of /'t in fg is Ditjmiry @by and v(30; iy aiby) = ming 45 (v(a;) +v(bj)) = s+t since
either ¢ < 4’ or j < j’ holds. Thus, one of the generator of ¢(fg) has value s +t. Moreover, every other
generators of ¢( fg) has value greater than or equal to s+t. This implies that c(fg) 2 (y**%) = ¢(f)c(9)
since (32,4 iy @ibj)A = y*+* A by property on [3][p.94].

. By the argument on [3|[p.94], DVR is Noetherian. Conversely, suppose a valuation ring A is Noetherian.
We claim that A is PID. Then, A is Noetherian (by given condition) local (by Proposition 5.18) domain
(by definition of valuation ring) of dimension one having maximal ideal which is principal (since A is
PID). Thus Proposition 9.2 shows that A is DVR.

To see A is PID, let a be an ideal. Since A is Noetherian, a is finitely generated. Thus let a =
(a1,--- ,an). Then, for any i,j € [n], either (a;) D (a;) or (a;) € (a;) by Exercise 5.28. Thus, using
inclusion as an order for {aj,---,a,}, this gives total ordering. Since {aj,---,a,} is finite, there
should be a maximal element a;, i.e., (a;) contains all (a;). Then, (a;) 2 a implies a = (a;). So A is
PID.

. Let m = (z) since m is principal. We claim that every element y can be expressed as y = uz® with
unique t. To see this, if y is unit, then by setting v = y, done. Suppose y is nonunit. Then, from the
condition (72, m? = 0, 3¢ € N such that y € m* for all k < ¢ but not in ¢.(Notes that if y € m’ then
for any k < t, y € m”* since m¥ O m!.) Thus if y = va® for some s < t, with unit v, then vz® = uz’.
Since it is domain, z is cancellable, thus vu~! = z!~%. This implies that 2!~ is unit, thus m = (1),

which implies x = 1, contradiction. Hence ¢ is uniquely determined.

Now let v(y) = t for given expression y = uz® with unique ¢. Notes that this map v : A — N is onto,
and satisfies v(yz) = v(y) + v(z) and v(y + 2) > min(v(y),v(z)). For the first one, since y = uz' and
z = vx®, v(yz) = v(uvz'™*) = t + s. For the latter, if we assume s < ¢, then y + z = 2°*(uz’~* + v).
Thus, v(y + z) = s + v(ux!™* +v) > min(v(y), v(2)).

Now, we can extend v from K* to Z, by defining v(y/z) = v(y) — v(z). Then, since any element in K*
has expression uz® with ¢t € Z, and also satisfy the above properties. Hence, v is a discrete valution on
K, and we observes that A = {z € K : v(z) > 0}. Hence, A is valuation ring of v, thus A is DVR.

. Let M be a finitely generated by x1,---,x,. Then by the surjective homomorphism A" — M,
M = A"/K for some submodule K of A™. By Exercise 3.13, M is torsion free if and only if M, is
torsion free for all prime ideals p.

Suppose M is flat. Then, by Exercise 7.16, M, is free A, module. Thus, M, = Ag” for some n, € N.
Since M = A" /K, M, = A} /K, by Corollary 3.4 iii) and Proposition 3.11 v). Thus, Agp =AY/ K.
If Ky, # 0, then A} /K, is not a free module, since for given basis {e;}}_; of A}, an element in K can
be expressed as Y.\ | a;e;, thus Y " | ae; = 0 in A} /Ky, hence {e;}}; is not linearly independent.
Thus, for any generator of My, its set of generators in M, = Ay /K, is not linearly independent. Thus,
M, is free module as AZ” but not free as A;’/Kp, contradiction. This shows that K, = 0, thus n, =n
by Exercise 2.11. Hence, K, = 0 for all prime ideal p. By Proposition 3.8, K = 0. Hence, M is free.
By below claim M is torsion free.

Claim LII. If A is integral domain, M 1is free module, then M is torsion free.

Proof. Let {e;}?_, be a basis of M. Any element in M can be expressed as Y., a;e; for some a; € A.
Now let Z?Zl a;e; be a torsion. Then by definition, 3b # 0 € A such that b Z?zl a;e; = 0. Since e;s are
linearly independent, ba; = 0. Since A is domain, ba; = 0 implies a; = 0 for all 5. Thus, Z?:l ae; = 0.
Hence M is torsion free. O
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Conversely, if M is torsion free, then M, is torsion free, since if m/s is torsion in M,, then 3b € A
such that bm/s = 0/1, thus tbm = 0 for some t € S, and since M is torsion free, this implies m = 0 or
tb = 0. If m is zero, then m/s is not a torsion, if m is nonzero, then tb = 0, thus b = 0 since 0 ¢ A — p.
Note that A, is PID since A is Dedekind domain, thus A, is DVR, and every ideal in DVR is power of
the maximal ideal, which is principal, thus every ideal is principal. Now, from the structure theorem
of PID, M, is direct sum of its free part and its torsion part. Since torsion part is zero, so M, is free.
By Exercise 7.16, M is flat.

~

. Notes that M, is still consists of all torsion elements, by the structure theorem of PID, M, =
EB;L; A,/(d;) for some d; € A,. (We already show that A, is PID since it is DVR in the proof

of the above exercise.) Since A4 is DVR, each (d;) = p*i A, for some k; € N, thus

Np

M, = P 4,/ (d)) = €D 4p /0" 4.
j=1 j=1

Now we claim that there are only finitely many p such that M, is nonzero. Since M is torsion
submodule, Ann(M) # 0. By Corollary 9.4, Ann(M) = [[}L, p?j with n; > 0. Thus, Supp(M) =
V(Ann(M)) = {p;}72; by Exercise 3.19 v). Now define a map ¢ : M — @?:1 My, by m — m/1.
Since A is Dedekind domain, every nonzero prime ideal is maximal. Thus, any two prime ideals are
coprime. Thus, for given ¢ # j, 3z € p; \ p;. Now let ¢ be maximum of k; in M, for alli=1,--- ,ms.
Then, 9 annihilates M, . Thus, (M,,),, = 0 since 2 € A — p;. However,

(Mp)p 3_, (M@Ap) @Ap \g/ M@(Ap @AP) \%J_, M@(Ap)p-

Proposition3.5 FEzxercise2.15 Proposition3.5

If we let S = A —p, then (Ap), = S7H(S71A) = (SS)"1A = S~ A by Exercise 3.3 since SS = S by
multiplicative closedness of S. Thus, (M), = M @ (A4p)y = M @ Ap, = M,. Thus, the given map ¢
A A

is locally isomorphism, i.e., for any prime ideal p, ¢, is isomorphism. Hence by Proposition 3.9, ¢ is
isomorphism.

Not it remains that show A,/p*A, = A/p*. To see this, let 1 : A/p* — A, /pFA, by T+ x/1. Tt is
injective, since if 7/1 =0, then z/1 € pkAp. This implies that /1 = y/s for some y € p*,s € A —p.
Hence, 3t € A — p such that tsx = ty. Since A is domain, tsx = ty implies st = y. By Corollary
9.4, (sz) has unique factorization as a product of prime ideals. Since sz € p*, (sz) C p¥. However
(sz) = (s)(x) and (s) € p. Thus, (sx) is product of factorization of (s) and (z), and we know that (s)
has no factor about p. Since this factorization must include p* or higher than k part, this implies that
(r) has factorization p* or higher part. Thus, x € p*. Thus, Z = 0. This shows that ¢ is injective.
Also, to see 9 is surjective, let z/s € A, /p*A,. Notes that p is maximal since A is Dedekind domain.
And s € A—p. Thus, in A/m image of s is nonzero and unit, thus 3y € A —p such that image of sy is
1. This implies that sy — 1 € p. Thus, (sy — 1)¥ € p*. Thus, expand (sy —1)* as (sy — 1)¥ =1 — sp for
some p € A, then, p (or —p) is inverse of s in A/p*. Thus, 2/s = ¢(Tp) since xp/1 = /s by xsp = .
Thus 1 is surjective. Thus, A,/p*A, = A/pF for any prime ideal p.

. From the proof of above exercise, A,/pF¥A, = A/p*. Thus for any a = p¥, since 4, is DVR, so every
ideal in A, principal, so is Ap/pkAp, thus so is A/p®. For general ideal a, Corollary 9.4, says that
a=[[_, p;-lj. Thus, define a projection ¢ : A — [}, A/p?j. Then, ker(¢) = ﬂp?j, By 1.10, since
each pair of primes is coprime, so is pair of power of primes, thus a = ker(¢). Thus A/a & H?Zl A/p;”.
Now we claim that product of PID is PID. Notes that by definition of product, every ideal is actually
product of each ideals in each component. Since each ideal in the component is pid, say generated
by b;, so the ideal in the product is generated by (b1,--- ,by), thus PID. Hence, A/a is PID since
contraction of the ideal is PID and every ideal in A/a is contraction of the ideal in the product.

To see every ideal is generated by at most 2 elements, let b be an ideal which is not principal. Let
a € b. Then, b D (a), thus b/(a) is nonzero ideal in A/(a) by 1-1 correspondence (Proposition 1.1.)
Since A/(a) is principal, b/(a) is generated by one element, say b+ (a). Then, we claim that (a,b) = b.
Notes that ¢ : A — A/(a), ¢(a,b) = (b+ (a)). Thus, 1-1 correspondence implies that (a,b) = b.
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8. As we've shown above, module equality is local property. Also, by Proposition 3.11 v), sum and
intersection commutes with localization. Thus we may assume that A is DVR. Then, m is principal,
say m = (z). And any ideal a, b, ¢ are (z?), (%), (z°) for some a,b,c € N. Also notes that sum of (z")
and (z™) is (z™("™) and intersection of (z™) and (z™) is x™®(™™) Hence, it suffices to check that

max(a, min(b, ¢)) = min(max(a, b), max(a, ¢)), min(a, max(b, ¢)) = max(min(a, b), min(a, c)).

If a is maximal, then first equality holds. If b is maximal then max(a,c) = min(b, max(a,c)) =
max(a,c). ¢ case is equal. Thus, first one is true for any case. For the second one, check the same for
when a (or b or ¢) is minimal.

9. As hint appeared, it is equivalent to saying that the sequences of A-modules

AL éA/ai L P A/(a+ay)
i=1

i<j

is exact. To see this, if  is solution, then ¢(x) is the solution, thus by exactness ¥(¢(z)) = 0 since
each z; is congruent with z; mod a; + a;. Conversely, if (z1,--- ,x,) satisfies such congruency, then
Y(x1,-++ ,x,) =0, thus by exactness, there is a solution z € A such that ¢(z) = (z1,- -+ ,zn).

To see it is exact, think about it by localization over p. By Proposition 3.3,

Ap 5 DA/a)y = DA/ (0 + ;)

i<j

is still exact. And, as we have shown in the proof of 7, (A/a;), = A,/a;A, and (A/(a; + a;)), =
Ap/(a; + a;)A,. Since A, is DVR, a4, = (2™) where x is an element generates pA,. Now, assume
that n, <n; if i < j. Then, (a; +a;)A, = (&™) if ¢ < j.

Thus, for any (21, ,z,) € @, (A/a;)p, each (4, ) component of ¢(z1,- -+ ,z,)) is x; — z; +a; + a;.
If (z1,---,2n) € ker, then @; —x; € a, +a; = a; when ¢ < j. Thus, 21 —z, € a1,20 — 2z, €
Qg, ** ,Tp—1 — Tp € Ap—1. This implies that ¢(z,) = (21, ,z,). Hence, kertp C Im ¢. Conversely,

o ¢(x) =0 since ¢(x) = (z,--- ,x) and (4, j)-component of ) o ¢(z) is  — x + a; + a; = 0.

Hence the sequence is exact locally. By Proposition 3.9, applying each map, we have the exact sequence
on the original one.

Notes that exactness is also a local property.

10 Completions

Notes that (z,y) — zy is continuous, then Ty, : G — G by (a,y) — ay is continuous for any a € G, since T,
is a restriction of continuous map (from {a} x G to G), thus continuous. Also, f : y — —y is continuous, so
does 2f. Hence, (z,y) —» x +y+— x+y — 2y = x — y is continuous.

And, T, and T_, are bijectively continuous, and open map since T, (O) = O+a and since T_,(O+a) = O,
T~1(0) = O + a, thus O + a is open, thus T}, is an open map. Hence, it is homeomorphism.

Lemma 10.1. Let H be the intersection of all neighborhoods of 0 in G. Then,
1. H is a subgroup
2. H is the closure of {0}.
3. G/H is Hausdorff.

4. G is Hausdorff <— H = 0.
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Proof. Let x € H, U be an arbitrary open neighborhood of 0. Then, —U is also open since x +— —x is
continuous map. Thus, V = U N —U is also an open neighborhood of 0. Thus, from x € V, —z € V. This
implies —z € U. Since U was arbitrarily chosen, —z € H. Thus it is closed under inversion.

Also, if z,y € H, then for any U, let W = +~1(U). Then, W contains 0, thus it is open neighborhood
of 0, thus z,y € W, which implies  +y € U. Since U was arbitrarily chosen, z +y € H.

Lastly, 0 € H.

For 2), « € H iff for any open neighborhood U of 0, since x € U,  — U contains 0. This is iff all open
neighborhoods of x contains 0. This implies z is boundary point of {0}, thus € {0}.

For 3), notes that closed set of quotient topology is union of sets of equivalence classes whose union of
those equivalence classes are closed. Since each equivalence class is closed in G, thus each singleton in G/H
is closed. Notes that G/H is still an topological group, thus (x,y) — x — y is continuous, thus preimage of
[0] in G/H by this map is closed. Since preimage is just ([x], [z]), this implies that diagonal in G/H x G/H
is closed. Then by the proposition in topology that diagonal of X x X is closed iff X is Hausdorft, G/H is
Hausdorff.

If G is Hausdorff, then any singleton is closed, thus H = 0. If H = 0, then G/H = G, thus G is Hausdorff
by iii). O

Claim LIII. X is Hausdorff iff diagonal D of X x X is closed.

Proof. If X is Hausdorff, then for any (x,y) ¢ D, x # y thus 3U, V disjoint open neighborhood of x and y.
Thus, U x V contain (z,y) but disjoint with D, otherwise U N’V # (), contradiction. Hence, X x X — D is
union of such open neighborhoods for all elements of X x X — D, so open. This implies D is closed.
Conversely, if D is closed, take an open neighborhood of (z,y) € X x X — D. Since X x X is product
topology, we may assume that there is open neighborhood generated by open set in generator of box topology
(since X x X is finite proudct, box topology is equal to product topology), say Ux V. Since UxV C X x X —D,
UxVND = (. This implies U,V are disjoint open set in X containing x and y respectively. So X is
Hausdorff. O

Definition Definition of Convergence. x, — y means that for any open neighborhood U of y, AN € N
such that Vv > N, x, € U.

Lemma . Cauchy equivalence is equaivalence relation. And sum of Cauchy sequence is Cauchy. Also, image
of Cauchy under continuous homomorphism, say f, is Cauchy.

Proof. z, ~ x, is trivial. If z, ~ y,, then take any open set U. Let V = U N (=U). (V is nonempty since
0 € V) Thus, 3N € N such that z, —y, € V for all v > N. This implies y, — x,, € V since V consists of
elements whose inverse is also in V' (To see this, if z € V, then « € U and —U, thus —x € U and —U, which
implies —z € V. ) Thus, y, — z, € U for all v > N. Hence y, — z, — 0.

To see transitivity, let x, —y, — 0,, — 2, — 0. Let U be an open neighborhood of 0. Then, +~1(U) C
G x G is open set since + is continuous function. Now take U; x Us, a basic open set generated from
product topology such that U, Uy are open and Uy x Us C +’1(U). Then Uy +Uy; C U. Take V = U; NUs.
Then, 9N € N such that both x, — y, and y, — 2z, are in V when v > N. Thus, there sum, z, — z, is in
V4+V CU, +U; CU, whenever v > N.

Now for sum of two Cauchy sequence, for any open set U, by the same technique we used above, 3V C U
such that V +V C U. Now take N such that both cauchy difference lies in V. Then, there sum lies in U
whenever v > N.

For f(x,), any open set U in the codomain, take preimage and get N for x,. This N works for f(z,). O

Notes that G has topology; for each open set U in G, define
U:={ieqG:Y{xi}ien € #,IN € Ns.t. z; € U for all j > N}.
These are base of topology G.

Lemma L. et f : G — H continuous homomorphism. Then induced map f . G = H is continuous
homomorphism. Also, ¢ : G — G is continuous. Moreover, go f = go f.
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Proof. 1t is homomorphlsm since f induces additive homomorphism. Let U be an open set in H. Then,
think about f~1(U). If {z,,} € f~*(U), then f(xv) € U, which implies that f(xv) is eventually in U. Thus,

&, is eventually in f~1(U). Thus, f~(U) C f- ( ). Conversely, if =, € f ( ), the z, lies eventually in
f71(U), thus f(x,) lies eventually in U, thus f(z,) € U, thus x, € f~(U). This implies f~1(U) = f~1(U).

For the second, ¢~ 1(U) is a constant whose constant Cauchy sequence eventually lies in U, thus the
contstant itself lies in U, hence, ¢~(U) = U. Hence ¢ is continuous.

Let x, be a Cauchy. Then, m(xu) = (go f(zv]) and go f(xy) = §(f(zy)) = g o f(zy). Done. O

Now, in the last paragraph of [3|[p.102], the author introduce the Fundamental system of neighborhood
and a topology generated by the system.

Definition [Fundamental System of neighborhood, or a neighborhood basis|. 0 € G has a funda-
mental system of neighborhoods when there is a sequence of neighborhoods of 0

G=Gy2G; 2

such that for every neighborhood U of 0 in G dn € N such that U O G,,.
If every G; is a subgroup of G, then we say it is a fundamental system of neighborhoods consisting of
subgroups.

Recall that neighborhood of 0 means a subset V' of A having an open set U such that 0 € U C V. I think
he implicitly assume that for any g € G, g has a fundamental system of neighborhood ¢+ G 2 g+ G 2
Now let B(z) be a fundamental system of neighborhood.

Lemma F. oranyg€ G, g+ Gg 2 g+ G1 2 -+ forms a neighborhood basis.

Proof. If U is neighborhood of g, then —g+ U is neighborhood of 0. Hence it contains GG,, for some n. Thus,
U contains g + G,,. O

Now we will define a topology from these fundamental system of neighborhoods. Actually, it will be the
topology whose basis is a set of all cosets g + G, for all g € G,n € N. In this kind of construction, Atiyah’s
argument showing G,, is closed is a little bit tautological; if we don’t know topology, then we cannot say
that whether translation is homeomorphism or not.

Lemma 1. n the topologies, the subgroup G, of G are both open and closed.

Proof. Since g+ G, is in the basis of topology for all g € G, G,, is open. Conversely, G UheZG (h+Gp).
Now, since we know h + (G,, is open as a element of basis, (G, is also closed. O

Typical example is the p-adic topology on Z with G,, = p"Z.
Lemma T. he group G with this topology is a topological group. Also, translation is continuous map.

Proof. We use the neighborhood definition of continuity. From 04z = x, we can denote x+y be an arbitrary
element of G for some x,y € G. Then, for any open neighborhood z + y + G,,, we have a product of open
neighborhood (z+G,,)® (y+G,,) such that (z+G,+y+Gr) C z+y+G,. So, u(z,y) = z+y is continuous.
Similarly, for any open neighborhood x 4+ G,,, there is an open neighborhood —z + G,, such that —(—z +
G,) =z -G, =z+ G, since —G,, = G,, because G,, is a subgroup. Hence, z — —z is continuous map.
Lastly, let T, be a translation map. Then, for any b + G,, 3b — a + G, such that T,(b — a + G,) =
a+b—a+ G, Cb+ G,. So translation is continuous. O

In the proof of Proposition 10.2, commutativity of the diagram comes from commutativity of the exact
sequence of inverse system.

In the proof of Corollary 10.3, G’ - G — G/G,, — 0 has a kernel G'NG,,. Thus, ¢ : G'/G'NG,, —» G/G,
is injective. Also, from G — G” — G"/p(G,) is surjective and G,, is in the kernel of this map, the
map 7 : G/G, = G"/p(G,) is surjective. And 7o ¢ = 0 by construction; both use the maps in exact
sequence. Conversely, if § € G/G,, is in kernel of m, then 7(g) = p(g) thus p(g) € p(G,). This implies
3h € G, such that p(g — h) = 0. By exactness, g — h € G’ by identifying G’ as a subgroup of G. Thus,
{g—h+GNG,)=g—h+G, =g+ G, =7, thus g € Im.. Hence the given sequence in p.105 is exact.
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Since G'/G' N G,, is surjective system, so by Proposition 10.2, there inverse limits also form an exact
sequence.

For Corollary 10.4, G/G,, = @m(G/Gn)/(Gm/Gn). Thus, if m > n,then (G/Gy)/(Gm/Gr) = G/Gp,
but m < n then (G/G,)/(Gm/Gr) = G/G,. Therefore if (a,) is a coherent sequence of CT/G\TL, then it
has a1 = ao = -+ = a,. Thus, we have a map ¢ : G//En — G/G,, by sending (a,) to a;. This map
is clearly surjection. To show it is injective, notes that if two coherent sequence (a,), (b,) are the same,
then by = g1 + ao for some g1 € G1 and b3 = ¢go + a3 and so on. Thus 0, g1, 92, -+ form a coherent
sequence. Since each coherent sequence comes from the Cauchy sequence, say (z,) be a Cauchy sequence
inducing 0, g1, g2, - - - . Then, limit of x,, in G is 0. Thus, limit of z,, in G/G}, is also zero for all p since map
G — G/G,, is continuous map. (Both are topological spaces;) Thus, g1 = go = --- = 0. Thus (a,) = (b,) iff
a, = b, in each G/G,,. Hence, ¢((a,)) = 0 implies a; = 0, thus a1 = -+ = a,, = 0, and this 0 sequence is
uniquely determined by Cauchy sequence inducing (a,, ), thus (a,) = (0). This shows injectivity of ¢. Also
it is clear that ¢ is addit/ive\homomorphism. Thus ¢ is isomorphism./_\

Now we claim that G/G,, = é/é:b To see this, take a map ¢ : G/G,, — é/é:l by (an) — (b,) where
by, = ap, for m > n and b; = 0,11b;41 for m < n. Then, a,, = b,, and this map is well-defined since (a,,)
has unique representation. Moreover, it is injective, since if (b;) = 0 then (b;) € C/l\n, thus by =+ -=b, =0
since limit of a Cauchy sequence inducing a,, lies in G,,. Hence, (a,,) = 0 in G/G,, which is isomorphic to
G//CT,L. Also, ¢ is surjective since any sequence (b1, by, --) € G can be represented taking a, = b, in G//CTTL
with the map of inverse system 6. Hence, ¢ is isomorphism.

And a-adic topology is a topology having {a’};cn as a fundamental system of neighborhood of 0. So the
basis of this topology is a collection of all cosets g + a* for any g.

Claim LIV. a-adic topology on A makes A a topological ring.

Proof. We already showed that addition and (additive) inversion are continuous. So it suffices to show that
tx (x,y) = zy is continuous. Recall that the neighborhood definition of continuity. Also notes that z =1z
in A, so any element in A can be denoted as xy for some z,y € A. Then, for any neighborhood of zy, say
a2y + a”, there is an open neighborhood of (x,y), which is (x + a™) X (y 4+ a™) such that (z 4+ a™) - (y +a™) =
xy +za" + ya" + a?® C xy + a”, since for any my - --m,, € a” with m; € a, xmy ---m,, = (xmy)---m, € a”.
So multiplication is continuous. O

In the proof of Lemma 10.8, @, is finitely generated as an A-module implies M;* is finitely generated
as A* module, since a* part acting on M,, components yields a*M,,, thus no more generators are needed to
construct M.

In the proof of Proposition 10.9, actually the author uses Lemma 10.8 twice; He use it for showing that
M, is a stable filtraion implies M* is a finitely generated module, and use it again showing that the finitely
generated A* module (M’ N M)* gives a stable a-filtration.

In the proof of Corollary 10.10, notes that a”M is already a-stable filtration by definition. In the
proof of Theorem 10.11, observe that a®M’ is stable filtration, thus by Lemma 10.6, we have a bounded
difference. Coinciding topology comes from the fact that in a bounded difference we can always find an open
neighborhood of one topology which is contained in an open neighborhood of the other topology.

For the proof of Proposition 10.12, we need to assure that the sequence M’ N (aM) and p(aM) gives
the same topology with the completion by aM’ and aM”. This is assured by Lemma 10.6; notes that
M’ N (aM) is stable by Artin-Rees Lemma, and p(aM) is also stable since p is an A-homomorphism so
a(a"p(M)) = p(a”M) = p(a”T*M) C a"*1p(M). Hence, by Lemma 10.6, all stable filtration induce the
same topology.

In [3][p.108], the third map is precisely

ARQM 22 AQ N & AR v = 1,
A A A

where f : M — M is canonical injection by construction of M. And § is defined by identity map. Also notes
that ¢ is well-defined via bilinear map A x M — A x M corresponding to §, which is identity.
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Also, Corollary 10.3 induces that completion commutes with finite direct sum by thinking direct sum as
a split exact sequence. . . A A
In the proof of Proposition 10.13, ¢ is surjective since 0 — ker(AQF - AQ M) - AQF - AQ M —
A A A A

0 is exact and apply Corollary 10.3. This implies « is surjective; for any x € M ; B 1s isomorphism and 0 is
surjective means Jy € A Q) F' such that d o 8(y) = z. This implies aoc (AQ F — AQ M)(y) = x, hence « is
A A A

surjective. If we assume Noetherian, since N is a submodule of finitely generated module, thus it is finitely

generated. Hence by the argument what we did now, ~ is surjective. And we know bottom line is exact by

applying 10.12on 0 =4 N — F — M — 0. Now, if 2 € ker(«), then Jy € AQ) F such that its image is z,
A

thus ¢ o 3(z) = 0. Hence, B(z) is in the kernel of of §, thus it is image of z € N. By surjectivity of v, z is
image of z’ € A N. By commutativity of diagram, sending 2’ along the top line, we have x is image of z’.
A

Since the top line is exact, x = 0. So « is injective.

Proposition 10.14 is direct application of definition of flat.

In the proof of Proposition 10.15, actually, we cannot directly apply 10.4 since A is completion of ring,
not a group. However, by the same argument we did for 10.4, we get the same statement for the completion
of ring. And for iv), let &, = Z?:o ) =142+ ---+a". Then, &, is Cauchy in A, since for any G*, there
is N = k such that Vn > m > N &, — &, = 2™t +...2" € a¥ since n > --- > m + 1 > k. Thus, limit of
&, converges, since A is complete. From this, (1 — z) is unit, since (1 — z) - lim¢,, = 1. Since it holds for
all x € a, thus for any y € fl, 1 — xy is unit since xy € a. This implies z is element of Jacobson radical by
Proposition 1.9. Since x was arbitrarily chosen, a is contained in the Jacobson radical.

In the proof of Theorem 10.17, known as Krull’s intersection theorem, aF = E follows from Artin-Rees
lemma; let k be the k in Corolllary 10.10. Let M’ = ﬂf:;k a®M. Then, E = a*M N M'. By Artin-Rees
lemma,

_ k / _ k+1 ! _ k+1 n _ n _ /
aE =a(@"M M) = (FTM)nM =@ M)n([)a"M)=([)a"M) =M
A-R Lemma n#k n#k

However, notes that a”M 2 a™M if m > n. Thus, M’ = E since M’ =(,2 ,a"M = E.

In the definition of G(A), if Tr, = T + Timy1 and Ty, = Ty, + Tpr1, then (T + Tmy1) - (Tn + Tng1) =
TonTn + T Tpi1 + T 1Tn + Ty 1Tmi1 = TmTy mod a™F? L Thus multiplication of G(A) is well-defined.

To see G(A) = (A/a)[z1, -+ ,T5) in p.111 of [3], notes that set of monomials of degree k is generating
set of a®/ak*1 by definition of multiplication in G(A). Also, it has elements in A/a. And if 75 € A/a,
then 7o - Z; = Wox;. Since yo & a if 7o # 0, so yox; & a®. Hence, 7px; is nonzero. Thus, this kind of
identification shows G(A) = (A/a)[Z1, -+ ,T5] as a set. Thus the identification is bijection, and additive
homomorphism in clear way. Also, the identification of case ygx; gives multiplicative homomorphism as well.
Hence, G(A) = (A/a)[z1, -+ ,T5] as a ring.

For the proof of Lemma 10.23, actually we need induction to show that either ker a,, = 0 or coker av,, = 0.
To see this, when n = 0, then «,, : 0 — 0 thus both injective or surjective. Then, do the diagram chasing to
show that a,, 41 is either injective or surjective, when a, is either injective or surjective, depends on whether
G, (@) is injective or surjective. (Actually, it is very similar to intermediate step of Five lemma.) In case of
G, (9) is injective, then ay, is injective, thus by taking inverse limit on the exact sequence derived by «,, we
have an injective map from lim(A4,,) — H(Bn) since the functor of inverse limit is left exact, by Proposition
10.2. In case of G, (¢) is surjective, then «,, is surjective. Also, we know from the proof of Proposition 10.12
that since G,,(¢) gives surjective system on G(A), which implies that taking inverse limit gives surjective
map between two inverse limit.

In the proof of Proposition 10.24, to see that [ is injective, let x € ker 8. Then, the constant Cauchy
sequence ()nen is zero in M /M, for all n, which implies z € (), cy My, = 0 since M is Hausdorff in its
filtration topology. Thus, x = 0. Also, to see that ¢ is surjective, let m € M such that m # 0. Then,
B(m) # 0, thus by the surjectivity of ¢ and a, 3f € F such that ¢(a(f)) = S(m). Thus, 8o ¢(f) = B(m).
Since f is injective, ¢(f) = m. Hence ¢ is surjective. Thus, M is generated by 1, - , ;.

Now, for Exercise 1, define

Definition T. he concept p-adic completion is defined as @1”21 A/(p™A).
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1. By definition, A = hm, A/(p*A), where A = @\ Z/pZ. Thus, p*A = 0 for any k > 1, which

implies that A = m, o A/(pFA) = @Di>0A/(0) = A. Also, notes that B = P, cyZ/p"Z. Thus
P"B =@, nP"L/p" L = @, P"Z/p" L. Thus, from
ifk<n

0
—1 kZ n7Y —
on ' Z/P"Z) {z € Z/pL:p"'x € p"L/p" L} = Z/pZ  if k >n

we know that a ' (p"B) = @, Z/pZ. Hence, by letting Ay = o' (p*B) = @,,., Z/pZ, AJA; =

(Z/pZ)*. Thus, it suffices to show that @(Z/pZ)k = [l,50Z/PZ. Actually, it is just special case of
more general one;

Claim LV. Let A = @,y Rn and Ay = @,,~;, B Then, l'glneN(A/An) = lim @, R =
[T Bn-

Proof. Notes that 6 : A/A,,.1 — A/A, is just canonical projection, by deleting last position. Let (a,)
be a coherent sequence in A. Then each a,, is n-dimensional tuple such that 6,41(an+1) = a,. Thus,
first n position of a,1 is equal to a,.

Now define a map ¢ : [, ey Bn — lim _ (A/An) by (r1,---,) = (an) where an = (r1,--+ ;7). Then
first of all, it is well-defined since (a,,) form a coherent sequence. Conversely, let 1 : LiilneN(A/An) —
[I.cn Bn by (an) = (r1,---,) where r,, is the last component of a,,. Then, ¢ o) and )0 ¢ is inverse to
each other. Also, they are ring homomorphism by checking additive and multiplicative homomorphism.

(It is tedious but trivial, so omit it.) Hence, ¢ and v are ring isomorphism. O

To see that p-adic completion is not a right exact, observe that

03 AL BRI B 4

is exact, since kernel of x — p -z is @,,5,p" 'Z/p"Z = a(A). Then by p-adic completion we have a
map

AL BESL B0
Notes that this is not exact; to see this, notes that B = [1,.50Z/p"Z. To see this, notes that B/Bj, =
B/p*B = (@k Z/p"Z) D (D, > Z/p*Z). Hence, if (b,) is a coherent sequence in @B/Bk, then

n=1
first n components of b,, 1 is equal to first n component of b,,. Hence, take a map ¢ : B— [L.>oZ/p"Z
by (bn) — (r1,---) where 7, is n-th component of b,. Conversely, take a map v : [],~,Z/p"Z — B
by taking canonical projection for each component in (r1,---). Then, it is well-defined inverse of each
other, and you can see that it satisfies homomorphic property.

From this observation, p - —(r1,---) = 0 implies r; € p*"'Z/p'Z = 7/pZ as a subset of Z/p'Z. Thus,
ker(p-—) = [[,50P" 'Z/p"Z. However, notes that a(A) = @, 0" 'Z/p"Z C [1,5oP" ‘Z/p"Z,
thus the given sequence is not exact. - -

2. By above computation, we know that the give exact sequence is

k
0~ Pz/vz - Pz/vZ — P Z/pZ — 0.
k>n n>0 n=0

Thus, yinnzo A/A, = ano Z,/pZ as we’ve shown above. Also, to calculate @1 A,,, notes that an

n>0
inverse system commute with A/A,, is 0,41 : Ap+1 — A, by injection; this means that if a,41 =
(@nt11, ) € Apta, then 8(ap+1) = (0,an41,2,- ) in A,. Thus, if we let (a,,) is a coherent sequence

in @7» 0 A, then n-th component of a; comes from the first component of a,,. However, from

an = 6(an+1), so the first component of a,, is zero. This implies n-th component of a; is zero. Since
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n was arbitrarily chosen, a; = (0,---). By the same argument on induction, we have a,, = (0,---) for

all n. Thus, @nz 0 A, = 0. Thus, what we have by taking %Ln functor is

00— A=EP2Z/pZ - lim A/A, = [[ Z/pZ — 0

n>0 n>0 n>0
Since B, Z/pZ # 11,~0 Z/PZ, it is not right exact. (Notes that 1'&114 = A since every coherent
sequence (ay,) should satisfy a,, = a, 1 since @ is identity map.)

Now to calculate Lim" A,, = coker(d*) where d : T[>, A,, = [[°°, A, by ay = ap — Opi1(anir), we
can use the Snake lemma in the proof of Proposition 10.2, saying that

1 1 1
0— 1'%1(1)14” — p?n;Aa I'%I(IJA/A” — l'&nAn — T&nA—) @A/An — 0.

From above calculation, we have

1 1 1
00— @z/vZ— [[ 2/pZ — lim A, — lim A — lim A/A, — 0.

n>0 n>0

Now we claim that @11 A = 0. To see this, let B, = A,B =[],y Bn for distinguishing notation.
Then, d® : B — B is by d®(a,) = an — 0,11(any1). However, since € is identity map, d®(a,) =
@ — @ny1. Thus, for any (a1, --) € B, we have an element (0, —ay,---) such that d?(0, —a;, —a; —
ag, )= (0—(—ay),—a; — (—a; —az), ) = (a1, as,---). This implies that d” is surjective. Hence,
coker(d®) = 0, which implies %iLnl A = 0. Therefore, we have an exact sequence

.1 .1
0 Pz/vz.— ] 2/vZ = lm A, — 0 — lim A/A, — 0.
n>0 n>0

Thus, by the first isomorphism theorem, @1 A, = ano Z/pZ/ ®n20 Z/pZ.

~

(It is a little bit weird, since it seems that there is no way to directly show that coker(d”) =
@nZO Z[pZ.)

. By the Krull’s intersection theorem, the left hand side (say F) is all elements in M annihilated by 14a
for some a € a. If m contains a, then 1+a € A—m, otherwise (1+a)—a = 1 € m, contradiction. Thus,
E., = 0, since for given x € E which is annihilated by 1+a for some a € a, z/1 = z(1+a)/(14+a) = 0/1.
Hence, © € ker(M — My,) if m contains a. Thus, £ C RHS.

Conversely, let N =5, ker(M — My). Then, Ny, = 0 if m O a, since Ny, is submodule of M, and
apply the fact that N is inside of kernel. Thus, by Exercise 3.14, K = aK. Hence, K = aK = a?K = ---
implies K =, cya"K C E.

For the remaining, notes that M =0 < M = aM, since if part holds by Nakayama lemma with
the fact Proposition 10.15 iv) that @ is contained in the Jacobson radical. Also, M =aMiff M =E,
by the argument M = aM = a2M = --- as above. And M = E iff M = K. Thus, by definition of
support, any maximal ideal containing a should not be in Supp(M). Now, notes that if p is a prime
ideal containing a but contained in a maximal ideal m, then A — p contains 1 + a, thus E, = 0, since
1+ a is unit in A,. Thus, p & Supp(M). Since p was chosen arbitrarily from a set of prime ideals
containing a, which is V' (a), this implies Supp(M) NV (a) = 0. (Conversely, if Supp(M) NV (a) = 0,
then Supp(M) contains no maximal ideal containing a, trivially.)

. If & is not a zero divisor, then 0 — A = A is exact. Now, by Proposition 10.14, A is flat, thus, A K-
A
is exact functor. This implies 0 — A = A is exact, since A® A = A.
A

The answer for last question is no. This example comes from [10][p.187-188]. Let R = k[z, y] where k
is a field of characteristic zero. Then, m := (z,y) is the maximal ideal. As we’ve seen in the proof of
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Corollary 10.27, k[[z,y]] is completion of R by m-adic topology. Now let A = k[z,y]/(y? — 2% — 23).
Then A has maximum ideal m = (%,y) where - is a canonical map from R to A. Then completion

with respect to W is A = R ® RA = k[[z,y]]/(y? — 22 — 23). (The last equality can be easily shown

by observing that every element is of form f ® 1.) Since y? — 22 — 22 is irreducible (if decomposition

exists, it has a form (y + f(x))(y + g(z)), but this gives f(z) +g(x) =0, f(x)g(z) = —:E? — 23, which is
nonsense.) so it is prime since R is UFD. Thus, A is integral domain. However, to see A is not integral
domain, it suffices to show that y* —z* — 2% is reducible; then from the fact that k[[x,y]] is UFD (since

it is power series ring over a field), y? — 22 — 2 not a prime. Thus, A is not integral domain.

To see this, notes that y? — 2% — 23 = (y + 2f)(y — 2f) = y?> — 22 f? if there exists f such that
f? = (1+z). Now, by letting f = >, -, anz, we can inductively define a,, by letting agp = 1. Thus,
such f exists. This is counter example of the question.

. Since M is finitely generated, by Corollary 10.13,

M® = A Q) M, M" = A° (X) M.
A A

Thus,
(M®)* = A* Q) (A (X) M) = (A" QA" QM = (A%)* R M
A A A A

Exercise 2.15 A

while
Mu—i—b — Aa+b ®M
A

Thus, it suffices to show that (A%)® = A+P,

Now, the inclusion induces same topology between A, = (a™ + b™)A and A}, = (a + b)"™A, since
for any basic open neighborhood z + A,, contains an open neighborhood z + A/, , thus any open set
in the topology induced by A, is open in another topology induced by A} and vice versa. Thus,
completion over A4,, or A} are the same, since completion is also defined by Cauchy sequences, and the
same topology implies that the set of equivalence of Cauchy sequence is the same, which means the
completion is the same. Thus, from the observation that completion is equal to inverset limit, we have

lim A/(a”" +b")A = Az lim A/(a +b)"A.
Now, from the given isomorphism, we have
@A/(a +b)"A X @(@A/(a" +b™)A).

Now observe that @A/(a +b)"A = A*t? by definition. To see @m(@n A/(a™ +b™)A) = (A%)°,
notes that isomorphism A* @ M — M*® is given by (a,) & — (anx) (see p.108 of [3]). Thus, the
A T

image of (6™M)® — M*® is b™M®. From the exact sequence
0—>b6"M—>M— M/6"™M — 0
we have exact sequence by Proposition 10.12
0— (6"M)* - M* — (M/b™M)* — 0
Then by the image of (b™M)® — M® with first isomorphism theorem, we have
(M/6™M)* =2 M®/6™M*°.

Thus

=)

(A%)" = 1im(A%)/6™ A* = Jim(A/6™ A)* = limim(A/6™ A)/((a" +6™)/ (5™ A)) = lim lim A4/(a” + &™)

dl

n
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where before last isomorphism comes from the fact that (a™ + b™) is the image of a™ under the map
A — A/b™ and where the last isomorphism is from the third isomorphism theorem.

Hence, (A%)® = A®+? holds.

To see that why the given isomorphism in the hint is true, notes that by definition, an element

of I&nm(@n A/(a™ +b™)) is a coherent sequence (am)men where an, € lim A/(a™ +b™), ie.,

m, = (am,n)nen. Now let 61 : amy1 — am and 02 @ Gpypy1 — Gp,pn, which makes the inverse

system for each inverse limit. Then, notes that for given a,,,, if n < m, then iterative application

of 0y sends ap,m tO Gm,n. If » > m, then iterative application of 6, sends an ., to @pmn. Thus,

the coherent sequence (@, )men is deteremined by (ann)nen € lim A/(a+b)"A. Also, from given

(b) € Hm A/(a+b)™ A, we can recover (a,,) € Jm (lim A/(a™+1b™)) by setting a,, ,, = by, and define
07" "a ifm>n

Ump = 2— m e . Hence this gives a bijective mapping, moreover preserves additivity
05 ", fm<n

and multiplicativity. Thus, it is bijection.

. If a is inside of Jacobson radical, then every maximal ideal m contains a. If z € m, then (z+a)Nm = 0,
otherwise (z 4+ a) — a = & € m, contradiction. Since x + a is open in a-topology, so the complement of
m is open, hence m is closed.

Conversely, if a is not inside of Jacobson radical, then there exists a maximal ideal m not containing
a. Then, for any n € N, a™ is not contained in m, otherwise its radical a should be contained in
m, contradiction. Thus, a” + m = (1) for all n € N. Thus, for given n € N, we have a sequence
ap € a”,m, € m such that a, + m,, = 1. This implies 1 — a,, € m", hence (1 + a™) Nm # ( for all
n € N. Since {1+ a™ : n € N} is a neighborhood basis of 1 in a-topology, 1 € m, the closure of m. This
implies m is not closed.

. If A is faithfully flat over A, then for any finitely generated module M, M — A@M >~ M is

A
injective. In particular, this is true for A/m, where m is any maximal ideal. Thus, ker(4/m —
A/m) = N> 0" (A/m) = 0. Now suppose to get a contradiction that A is not Zariski ring; then
there is a maximal ideal m which doesn’t contain a, thus Ja € a — m, thus a(A/m) = A/m since
a # 0 and A/m is a field, thus @ is unit. Therefore, a”(A/m) = A/m for any n € N. This implies
Ny>oa™(A/m) = A/m # 0, contradiction. Hence, A is Zariski ring.

Conversely, if A is Zariski ring, then a C m, thus (), -, a"(A/m) = 0, since a acts on A/m only trivially.
Since ker(A/m — A/m) = >0 @"(A/m) comes from the construction of completion, we can say that

A/m — A/m is injective. Thus, from the fact that A/m is nonzero, A/ is nonzero. This implies
m = m¢ is proper ideal of A. By Exercise 3.16 iii), this implies that A is faithful flat A-algebra.

. We claim that

Claim LVI. If f € B has nonzero constant term, then f is unit in B.

Proof. If n =1, done by Exericse 1.5 i). For n > 1, suppose that f has nonzero constant term. Also,
by mutliplying suitable constant, assume f(0,---,0) = 1. Then, if f~! exists, then f=* =3, (1— f)*
by geometric series; letting g = (1— f), f~! = (1—g)~! =3, ¢* =. Now, since 1 — f has no constant
term, >, (1 — f)* is well-defined; since for each coefficient of fixed degree, say d, is determined by finite
partial sum Zz:o(l — f)%, and there is only one constant term, which is (1 — f)° = 1. This shows that
F1 exists.

Now, to show f~! € B, we need to show that f~! has also positive radius of convergence if f has.
Suppose f(0) = 1. Then, since f has positive radius of convergence near 0, so does g = f — 1. Notes
that since f =1 = ﬁ =1-g+g?+---, and we know that the geometric series converges when |g| < 1.
Hence, from ¢(0) = 0, let > 0 such that g converges and |g(z)| < 1 for any z € B,.(0). Notes that this
r is nonzero, since ¢(0) = 0 and continuity of g implies 3r; > 0 such that |g(z)| < 1 for all z € B,, (0);
also, by letting R be the convergence of radius, min(ry, R) > 0 guarantees that r is nonzero. Hence,

f~! converges when z € B,.(0). So it has positive radius of convergence. O
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From this, B is a ring; to see it is local, notes that if f has nonzero constant in B, then f~! € B.
Thus, by letting m = (z1,- -, 2,) an ideal of B, f & m is unit. Therefore, Proposition 1.6 shows that
B is local ring with the unique maximal ideal m.

Notes that A C B is obvious, since ¢g(0) # 0 implies g has nonzero constant, thus invertible in C', which
shows that g~ € C. Moreover, from ¢ has infinite radius of convergence, so g~! has positive radius of
convegence, which implies both g, ¢g~! € B. Also, any polynomial is in B. This implies A C B.

Moreover, B with completion is C, to see this, notes that A C B C C with A=c=C by Corollary
10.27. Observe that A/(m N A)™ = B/m" for any n € N, since image of power series in B/m" is
truncation of power series up to degree n, which is polynomial, thus, the same as A/(m N A)". This
implies A and B has the same inverse system with respect to m-adic topology, hence A=B=C.

Lastly, observe that A, B are Zariski ring; since A, B are local ring with m-adic topology, where m is
just Jacobson radical. By Exercise 10.7, C' = A=Bis faithfully over A and B. Now notes that A — A
actually factor through A — B — B, and we know that A — B — B = A — A is flat and B — B is
faithfully flat. Thus, by Exercise 3.17, A — B is flat.

. We need to construct coprime monic polynomials g, hy with degree » and n — r such that gyhy — f €
mFA. In k = 1, g1, hy are given by the problem. Thus suppose we know gz_; and hj_; such that
deg(grp_1) = r,deg(hx—_1) =n —r and gx_1hr_1 — f € mF~1A[z], and that their image gr_1,hy_1 are
coprime in (A/m)[x], which is PID.

First of all, by inductive hypothesis that f(z) — gx_1(z)hi_1(z) € m*~1(A[z]),

f(@) = gr—1(2)hi—1( Zcpafp

p=0

for some ¢, € m*~1. Now fix p such that 0 < p < n. Then, since (A/m)[z] is a PID, we can apply

Bezout’ identity on gr_1,hx_1 to get @,,b, € (A/m)[z] such that @,gr_1 + byhx_1 = 2P. Now by
Euclidean lemma, there exists ¢, € (A/m)[z] such that @, = hy_1g+r with degr < deghy_1 =n—r.
Then,

=1 + (qgK=1 + bp)hg—1 = ¥
Thus, by replacing @, with r and E with (qgr—1 + E), we may assume that dega, < n —r. Then,

degbphr—1 = dega? — @pgr—1 < deg f.

Thus, degb, < deggr—1 = r Therefore, we may choose a, and b, such that for each 0 < p < n,
Jap, b, € Alz] such that a,gx—1 + bphr—1 — 2P € m(Alz]) with deg(a,) < n —r,deg(b,) < r.

Thus, if we let rp(z) = apgr—1 + bphi—1 — 2P € m(A[z]), then P = apgr—1 + bphr—1 — rp(x), thus
J(@) = gr—1(x)hg—1( Zcpmp Zcp (ap(®)gr—1(2) + bp(2) A1 () — 1p(2)) € mk_l(A[m])

From this, let gr = gr—1 + Y- _o cpbp(®), by = hy—1 + 37 cpap(z). Then,

gehi = gr—1hi—1 + Y eplap(@)ge—1 () + by(x)hi—1( (Z Cpbp > <Z Cpap($)> :
p=0

p=0

thus
f(x) — gphy = Z cprp(T) + <Z c,,b,,(x)) (Z cpap(x)> =0 mod m*
p=0 p=0 p=0

since ¢, € mF¥~! and r,(x) € m(A[z]) by construction, and ¢, - ¢,y € m?=2 C m*. Moreover, g, = g1
mod m*~! and hy = hj—1 mod m*~! since ¢, € m*~1L.
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10.

11.

In summary, we just showed that for each k € N, 3gy., hy, € A[z] such that f—gph, € m* and gr11 = g
mod m* and hyy; = hy mod m*. Thus, if we think about the map 65, : A/mF*1 — A/mF consisting
inverse system, then 0y 1(gr71) = g since 6 is just a map sending each coefficeint ¢ = c+m**! of gr71 €
(A/m**1) to ¢ + mF, thus 041 (grs1) = grr1 mod m* = g. Hence, if we suppose gi 1= >, _, Crn2™,
then (cg.n)ren form a Cauchy sequence for each n, since for any m”, a basic open neighborhood of 0, for
any ki, ke > k, we have ¢, n — Ciy,n = Ci,n — Ck,n, mod m* = 0 mod m* implies that cg, n —Crym € mk.
Therefore, since A is complete, 3¢, = limy, ¢ in A. Now let g = >~ _ ¢,2™. In the same way, define
h. Then, g = g, mod m*, h = hy mod m*, thus f — gh = f — gphy mod m¥[z] = 0 mod m*[z] for all
k € N. Thus, f — gh € >, m"[z]. Since A is complete, (5, m* = 0, which implies f — gh = 0.

(a) From definition of simple root, f is factorized as f = (F — a)h(z). Let g = T — a. By applying
Hensel’s lemma, we have g,h € A[x] such that f = gh. Since deg(g) = 1, ¢ = = — a for some
a € A. Thus, f has simple root a € A such that a = @ mod m.

(b) To see this we need to find a solution of 22 — 2 in the 7-adic completion of Z. Moreover, if
solution « exists, then 22 — 2 splits into (v — a)(z + «). Now if we let A = Z7, the completion
of Z by (7), then m = (7), thus A/m = Z7/7Z; = Z/7Z by Proposition 10.15. Now notes that
32 = 9 = 2 mod 7 is the solution of this equation, thus Hensel lemma lifts 3 to some element in
Z7. Thus 2 is square in Zr

(c) By thinking A = k[[z]],m = (), we have k[z,y] C A[y]. Then, f(0,y) = f in (A/m)[y]. Thus,
f(0,y) = (y — ao)h(y) induces f = (y — a)h(z,y) in Alz]. Thus, f has a solution a € A = k[z]].
Thus, by letting y(z) = a, f(z,y(z)) = (a — a)h(z,y(z)) = 0.

Let A be the ring of germs of C*° functions of x at z = 0. Notes that f and g are in the same germ of
0 if and only if 3U an open neighborhood of 0 such that f|y = g|y. Also, ev: A — R by [f] — f(0)
gives that m = {[f] : f(0) = 0} is a maximal ideal. Also, if [f] admits f(0) # 0, then by inverse
function theorem f admits local inverse at 0, so J[g] such that [f][g] = [1]. Thus, [f] is unit if it is not
in m. Thus A is local ring.

First of all, we claim that

di
mb = {[f]e A: - (f)(0) =0 for all 0 < j < k}.
x
To see this, if f; - -- fi are product of elements in m, then by product rule of differentiation, each term
occurs at j-th derivatives contain at least one of f;, thus 0 when = = 0. Conversely, if f is in the right
hand side, then by Taylor’s theorem, for any open neighborhood U of 0,

k—1
f@)=> %f@(ow + gu(@)" = go(a)a”
j=0""

where g, € C*(U) and g,,(0) = £ f*(0). Thus f € ([z"]) € m"*. Done.

And from this argument, we see that m* C {[f] € A : g—;(f)(O) =0forall0<j <k} C ([2"]) Cmh.
Hence, m* = ([z"])

Now to understand A, we claim that A/m* = R[z]/(z*) for all k. Notes that R[z] — A sends (z")
to ([z"]), so R[z]/(z¥) = A/m* = A/([2*] by the first isomorphism theorem. Also, This commutes
with the map 041 : A/m*! — A/m* and 6], : R[z]/(z*T!) — R[z]/(2*) since both of the works by
picking representation in R[z] (or A) and mod out by (z*) (or m¥). Thus, A ~R[z] = R[[z]]. Since R
is field, so it is Noetherian, hence by Corollary 10.27, A is Noetherian.

Then, A is finitely generated A-module since A — A = R][[z]] is sending f to its Taylor expansion.

(One can actually use this map to showing that A/m* = R[z]/(z*)) Hence, by Borel’s theorem, A — A
is surjective. Thus, as a module, A is finitely generated module since image of ([1]) generates all A.

However, A is not Noetherian, since (1, cy([z"]) # 0; think e~1/#" Since its Taylor expansion at 0 is
0, it is inside of ([z™]) for all n. Thus, by Corollary 10.18, A is not Noetherian.
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12. Notes that A — Alzy,---,x,] is flat by applying Exercise 2.5 and 2.8 ii) n times. Now, notes that

Alxy, -, 2] = Al[z1, -+, xp]] is faithfully flat, since Exercise 1.5 v) shows Spec(A[[z1,- -, 2zn]]) —
Spec(A[xy, -+ ,xy,]) is surjective, which is one of equivalent conditions of faithfully flat. Now apply
Exercise 2.8 ii) on A — Alxy, -+ ,x,] = A[x1, -, zn]] to get A — Al[xq1, -+, x,]] is flat.

11 Dimension Theory

In the proof of Theorem 11.1, L is annihilated by x4 since L, = My, /xsMy,; thus if we multiply zs on
m € Ly, then ;- m € xsMy o1, thus Tom = 0 € My ok, /s Mptk,. Also, to get (2), by summing the

above line, you get
o0

P(K,t) — )+ > A, t"’%—ZA Yk

Multiply t*s, then you can get

th P(K,t) — t* P(M,t) + i A(M, )" = i AL, )t"
n=k

s n=~k;

Then, Y707, AM,)t" = P(M,t) — gi(t) and 3372, A(Ln)t" = P(L,t) — g2(t). Thus, by letting g =
92(t) — 1(t),
ths P(K,t) — t*P(M,t) + P(M,t) = P(L,t) + g(t).

Now by reordering you can get (2). Now inductive hypothesis shows that P(L,t), P(K,t) are of given form,
thus so is P(M,t).
In the proof of Corollary 11.2, (1 —#)~¢ =0 (‘Hk 1)tk is from following; since (1 —¢)~% = H?Zl(l +

t+12+4--.), thus the coefficient of t* is the number of ordered d-partitions of [k]. Actually, it is the same as
giving d — 1 bars on the sequence of same k balls to make d groups. Thus, it is the same as choosing d — 1
positions in a row of d — 1 + k positions and assign bars on the chosen positions and put balls on the other
positions. Thus, we get (‘Hk*l).

Now, for A\(M,,) if n > N, then since it is coefficient of " with n > N in f(¢) - (1 — ¢)~%, it is sum of
aith x (d+g "1tk for k=0,1,---, N. Done.

Also notes that d in corollary 11.2 is the order of the pole.

To get d(L) = d(M)—1, notes that in given situation, L = M /xM and by applying A on 0 — My — M; —
Ly — 0 you get A(L1) = A(M1) — A(Mp). And, (2) gives (1—t)P(M,1)+A(My) = P(L,1)+X(Lo) = P(L,1)
since Lo does not exists. Thus, P(L,1) — )\(MO) (1 —t)P(My). Since A(My) € Z, the order of the pole of
P(L,1) is 1 less than that of M. This shows d(L) = d(M) — 1.

In the example in p.118, length of A,, can be obtained by a chain of submodule, whose n-th module is
generated by (s‘gﬁfl) — n monomials.

In the proof of Proposition 11.4, to see that G(A) is Noetherian an G(M) is finitely generated graded
G(A)-module use Proposition 10.22. Also, A/q is Artin, since Corollary 7.16 shows that In € N such that
m"™ C q, thus m in A/q is nilpotent. Now apply Proposition 8.6. Also, a finitely generated module M over
Artinian local ring A is artinian, since 0 — ker(A™ — M) — A™ — M — 0 is exact sequence of A-module,
and A" is also Artinian by Theorem 8.7. Now apply Proposition 6.3. And M /M, is of finite length since
each M,,_r/M,, with k > 1 has finite length; when k& = 1, done. Suppose M,,_j+1/M, has finite length.
Then, it has a short exact sequence

0— Mnfkqtl/Mn — Mnfk/Mn — Mn,k/Mn,kJrl —0

Since each M,,_;4+1/M, and M, _x /M, _r+1 have the composition series, thus Proposition 6.8 says that it
satisfies both chain condition. By Proposition 6.3, so does M,,_/M,,. Now [(-) is an additive map on module
with finite length, the exact sequence induces

Z(Mn—k/Mn) - Z(Mn—k—i-l/Mn) = l(Mn—k/Mn—k—i-l)-
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Thus this finite difference implies [(M/M,,) = > I_, I(M,_1/M,). Also, as a polynomial notes that I is a
polynomial in n of degree < s — 1 distinct with f(n), by thinking it as a coefficient of power series. Thus,
sum I, is a polynomial g(n) of degree < s for all large n. Lastly, to get lim,_~ g(n)/g(n) = 1, apply limit
on g(n)/g(n +no) < g(n)/3(n) < §ln+no)/G(n).

In proof of Proposition 11.6, containment affects on the size of polynomial since it is just coefficient as
a length. Thus, by taking n — oo on 1 < &(n)/&m(n) < &n(rn)/Em(n), we get limy, oo Em(1n)/En(n) =
rdeg&m(m) > 0 when r > 1. Hence limit of &;(n)/&m(n) converges; this implies &;(n) and &y (n) have the same
degree.

To check d(A) = d(Gm(A)), I refer [11][11.2]. Let old d in [3|[p.117] is dp and new d in [3][p.119] be
d,. Then it is the problem of checking d,(A4) := do(Gm(A)). Notes that Gn(A) is Noetherian graded
ring since A is Noetherian local and Proposition 10.22 (i). If we assume M = A in Proposition 11.4,
lp, = 1(A/m™). Corollary 11.4(1) shows that I, = > _, I(m"/m"*1). And definition of do(Gwm(4)) is a pole
of P(Gu(A),1) = 307 l(m"/m"™™H)". Let Q(A,1) := > 02, l,t". Then, P(Gn(A),1) - Yoot = QA 1),
ie., P(Gu(A),1)- & = Q(A,1). Hence, do(Gm(A)) +1 = dy(A) by definition of the pole. By applying
Corollary 11.2 on Q(A4, 1), we can get do(A) — 1 = d,(A). Thus,

do(Gm(A)) = do(A) — 1 = dy(A).

Or, you can see that
0—m"/m" ™ = A/m" 5 A/m =0

This is exact by third isomorphism theorem. (Take quotient and apply it.) Then, by multiplying ¢, we can
get
(1 -t)Q(A,1) = tP(Gm(A),1) + I(A/m)

Hence, do(Gm) = do(A) — 1. Now we can get the same answer.

In the proof of 11.8, the exactness of short exact sequence can be checked by showing (M/q"M)/(xM /q" M) =
(M/xM)/q™(M/xM) directly. The map is just sending representation to representation. However, I didn’t
know whether A/q™A is flat or not.

For the example in [3][p.121], notes that G (A) is a polynomial ring over A/m with n indeterminates.
Thus, length of each module is just the number of monomials with particular degree. This leads to the
Poincare series in the book. Thus, dy(Gm(A)) = n = dy,(A) =n == dim A = n by Theorem 11.14
— dim A, = n since any prime in A contained in m.

In corollary 11.15, since m is generated by dim A = 6(A) number of elements by the dimension theorem
s > dim A.

In the proof of Proposition 11.20, d is old d, i.e., dy with A = . Thus, d(Gq(4)) < d((4/q9)[t1,- - ,ta)/(f))
comes from the fact that (A/q)[t1,--- ,ta]/(f) = G4(A) is still surjective since f € ker(a), thus preimage of
chain of submodules in each graded summand of the latter is also chain in former. The rest is straighforward,
and the last equation d(G4(A)) = d is actually do(G4(A)) = do(Gm(A)) = dy(A) = d where first equality
comes from the previous argument that it doesn’t matter on the pole whether use m-primary ideal or m itself
by Proposition 111.6. And the second equaltiy is just definition of d,,, and the third equality comes from the
example in [3][p.121].

In the proof of Corollary 11.21, fs(x1,---,24) = —higher terms, thus it is in q**!. That’s why we can
apply 11.20 in this case.
In the proof of theorem 11.22, iii) — i), notes that generators z1,-- - , 24 of m (which is clearly m-primary

ideal) is a system of parameter since dim A = d. Thus, by Corollary 11.21, they are algebraically independent
over k. Thus, the epimorphism « constructed in Proposition 11.20 must have no kernel elements except 0.

For the statement that regular local ring is integrally closed, see [12][Proposition 2.2.3].

Notes that the strong Nullstellensatz (Exercise 7.14) implies that for any ideal a of k[z1,---,zy],
I(V(a)) = r(a). In case of when a = m , then V(m) is a point of k™. Thus it gives a bijection between k™
and maximal ideals of k[z1, -+, x,].

In the proof of Theorem 11.25, notes that dim V' is actually the number of algebraically independents
of k&(V). And k(V), a field of fraction of A(V), contains A(V)y as a subring. Thus, by Corollary 11.21,
since A(V)y contains k and has a system of parameters, which is a generators of mA(V)y,, then they are
algebraically independent over k. Thus, the number of algebraically independents elements of k(V') has at
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least the number of the system of parameters of A(V)y,, which is dim A(V )y, since A(V)n C k(V). Hence,
dimV > dim A(V ).
In the proof of Lemma 11.26, integally closed means integrally closed in the field of fraction.

1. Let P = (p1,--,pn). Since k is algebraically closed field, f = Y.  (x; — pi)g; for some g; €

k1, ,x,). Hence,
of _ 891 - 393
8xi_gl+(l 5‘zz+z —1;) Ox;’
Thus, f is singular at P if and only if g; € m% if and only if f € m%. Now notes that m is image of
mp in A= k[z1, -+ ,2,]/(f). Thus, image of k[zy, - ,2z,] — mp is just A — m. Hence,
/{3[1‘1,'-' vxn]mp/(f)mp = , (k['rl"" 7xn]/(f))mp = , (/{[321,"' ’xn]/(f))m:Am'
Corollary3.4iii) Exercise3.4

Also, m? can be denoted as an image of m%, thus m? = (m%+(f))/(f). Thus, m/m? = (mp/(f))/(m%+
(F))/(f) 2 mp/(m% + (f)) where the last equality comes from third isomorphism theorem. Now, f
is singular if and only if f € m% if and only if m/m? = mp/(m%) if and only if dimy(m/m?) =
dimg(mp/(m%)) = n. Thus, when f is singular, dim Ay, = dim A = dimk[z1, -+ ,2,]/(f) =n—1 #
n = dimg(m/m?). So A is not regular. If f is nonsingular, then m% + (f) is strictly greater than mp,
hence there is v € mp which is nonzero in mp/m% but zero in mp/(m% + (f)). Since mp/m% is a
vector space, there is a basis containing v. This implies that as a vector space mp/(m% + (f)) has
dimension less than that of mp/m%. Thus, dimy(m/m?) < n — 1. Now apply Corollary 11.5 on A, we
get n — 1 = dim Ay < dimg(m/m?) < n — 1. This shows dimy(m/m?) =n — 1. Hence Ay, is regular.

2. This homomorphism is lifting of k[t1,--- ,t4]/(t1, - ,ta)™ = A/(z1, -+ ,24)™ as t; — x; into their
completion. This map is injective for any n, since p(z) = 0 implies the least degree monomial of p(x) is
at least n, thus the least degree monomial of p(t) is at least n, hence p(t) = 0. Thus, by Proposition 10.2,
the map between completion is injective. Now all we need to show is that (x1,-- - ,z4)-adic completion
is equal to m-adic completion. Since (x1,---,x4) is m-primary and A is Noetherian, Corollary 7.16
shows that m™ C (z1,--- ,24) € m for some n > 0. Thus, as a neighborhood base, (z1,- - ,z4)-adic
basis and m-adic basis has the same open set. Hence, (z1,--- ,z4)-adic completion is equal to m-adic
completion. Hence the given homomorphism is injective.

Now we may think that A is k[[t1, - ,t4)]] module. {(z1, - ,24)"}nen is (t1,- - ,tq)-filtration of A.

Moreover, since A is m-adic completion, which is equivalent to g-adic completion, thus A is Hausdorff

in its filtration topology. Now let a = (x1,--- ,24). Notes that k[[t1, - ,t4]] — A is injective. By

below claim, k[[t1,--- ,t4]]/(t1,- - ;ta) = A/(21,--- ,2q) is injective. Hence, G4, ... 1,)(k[[t1,--- ,ta]])

has a natural map on G(g,,... z,)(A) since their zeroth component is isomorphism and their other
components are generated by correspondence t; +— T;. Thus, G4 ... z,)(A) is generated by 1 in

Gty gy (E[[t1, - ta]]) asa Gy, .. ¢, (K[[t1, - -+, t4]])-module. So it is finitely generated G, ... 1,y (K[[t1,- - - ,td]])-
module. Thus, By Proposition 10.24, A is finitely generated k|[[t1, - - ,t4]]-module.

Claim LVII. Let o : A — B be an injective ring homomorphism. Let I be an ideal of A. Then,
o+ A/T — B/I¢ is injective ring homomorphism.

Proof. Suppose that o/ (@) = a(a) = 0. Then a(a) € I°N«a(B) = a(I). Thus a € I. Hencea =0. O

3. From Noether normalization, there is a ring B = k[z1,- - ,z4] contained in A(V') such that d = dim V
and A(V) is integral over B. By Lemma 11.26,

dim By = dim A(V)m
Also by the hint k[zy,--- ,z4] is integral over k[zy,--- ,x4]. Thus, by applying Lemma 11.26,

dim B, = dimk[z1, -+, 24]4-
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By picking m and q such that mN B = n = qN k[xy, -, 24|, and from the theorem 11.25 implies
that dimk[z1,- - ,24]q = d where d is a dimension of variety V over k for all maximal ideal q of
k[x1,--+ ,24). Hence, dim B, = d for all maximal ideal n. Since B was chosen as d = dim V where
dim V' is dimension of variety V over k, this implies the local dimension of V' at any point is equal to
dimV.

. Just notes that p; = (Tym, 41, s Tm,,, ). Now we claim that maximal ideals of S—1A are p;s. Now if a
is an ideal of A does not meet S, then a is inside of union of p;s. Actually, since A is Noetherian, a is
finitely generated, and each generator of a contains finitely many indeterminates. Hence a is inside of
finite union of p;s. Thus, Proposition 1.11 i) shows that a is contained in p;. Thus by Proposition 3.11
i), all maximal ideals are S~'p;. Now, to use Exercise 7.9, we claim that S~ Ag-1,, is Noetherian. To
see this, define a map

(S7'A)g-1p, = Ay, by (a/b)/(c/d) — ad/be.

Then, it is well-defined, since if (a/b)/(c/d) = (e/f)/(g/h), then 3t/q € S~*A — S~1p; such that
tag/gbh = tce/qdf, which implies 31 € S such that ltagqdf —Igbhtce = 0. This implies ltq(agdf —bhce) =
0. Since ltq € S, thus ltg € A\ p;. Hence, ad/bc = eh/gf in A,,. Now surjectivity is clear; for any
a/b e Ay, send (a/1)/(b/1). Injectivity is clear since ad/bc = 0/1 implies there is ¢t € A —p; such that
tad = 0. Since td # 0 with A is integral domain, a = 0. Thus, (0/b)/(c/d) is preimage of it, and notes
that this is the same as (0/1)/(1/1).

Hence, this map is isomorphism as a ring. Thus, each S~1A s-1p, is Noetherian since Ay, is Noetherian
for any i by Corollary 7.4. Thus by applying exercise 7.9, S~'A is Noetherian. Now notes that each
S~1p; has height equal to m; 1 — m;, which increases when i — oo. Thus, dim S™!A4 = cc.

. Suppose that 7 is a map sending an Ag-module M to its class in K(Ag). Then, for any homomorphism

Xo : K(Ag) = Zlet P(M,t) =Y 0" Ao((My,))t". Then, P(M,t) = % Notes that proof is

exactly same; since the construction of K(A) implies that applying Ag on exact sequence is 0.

. Follow hints; let f : A — Alz] be the embedding and consider the fiber of f* : Spec(A[z]) — Spec(A)
over a prime ideal p of A. By Exercise 3.21 iv), f*~1(p) = Spec(k @ A[z]) where k is the residue field
A

of the local ring A,. Now notes that k@ A[z] = k[z] since ¢ ® az’ = a(q ® 2') = (ag ® z") where @
A

is image of a on k. Also, dim k[z] = 1 since k[z] is PID. Thus, if A has length r chain consisting of
r 4+ 1 prime ideals, then A[z] has at most length 2r 4+ 1 chain consisting of 2r + 2 ideals. This shows
dim A[z] <1+ 2dim A.

Conversely, if A has length r chain consisting of r + 1 prime ideals, then Exercise 4.7 ii) implies that
Alx] has at least length r chain induced by chain of A. Moreover, let p,. be the top elements of the
chain of A. Then, p, + (z) is prime in A[x]; to see this, let A[z] - A — A/p,. Then, this is surjective
map. And kernel is p, + (z). Since A/p, is integral domain, so p, + (z) is prime. This implies
dim A + 1 < dim A[z].

. Follow hints; We already know that dim A[z] > 1 + dim A. Thus we should show the other inequality.
Let p be a prime ideal of height m in A. Then there exists ay, - , a,;, € p such that p is minimal prime
ideal belonging the ideal a = (a1, - ,am). To see this, apply dimension theorem on A,, which shows
that there is pAp-primary ideal with m generators. By Exercise 4.7 v), p[z] is a minimal prime ideal
of alz], thus height p[z] < m by Corollary 11.16.

Now, let p be a prime ideal of A[z]. Then, p¢ is prime ideal of A. If p¢ has height 0, then p¢ = 0. Thus,
from the fact that f*~1(0) is set with two elements and one element is zero ideal of A[z], p is minimal
ideal belong to 0; otherwise there exists another prime ideal between p and 0, and this should be in
f*71(0), contradiction. This shows height of p < that of p°+1 when p¢ has height 0.

Then, suppose this holds when height of p¢ is m. Then, for any prime ideal q strictly contained in p,
height of q¢ is less than or equal to m. Now notes that pc[z] is a subset of p such that both are in
57 1(p). If p[z] = p, then height of p is less than height of p¢+ 1. Done. Otherwise, there is no prime
ideal between p¢[x] and p since f*~1(p¢) has cardinality 2. In this case, p¢[z] is strictly less than p,
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thus height m. Hence, p has height less than m + 1. This shows that every prime ideal of A[z] has
height less than 1+ height of its contraction. Hence, dim A[z] < 1 + dim A.

Now by Exercise 11.6, this shows dim A[z] = 1 + dim A. In case of polynomial ring with multiple
variable, notes that Hilbert basis theorem shows that each polynomial subring is Noetherian. So apply
inductively the above argument.
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